
UCID-19631,19632,19633

SLATEC2 (AAAAAA through D9UPAK)

SLATEC2 (AAAAAA through D9UPAK) - 1

Table of Contents

Preface 8
Introduction 9

Using SLATEC Documentation 9
Loading SLATEC Under UNICOS 9

Subroutine Descriptions 11
AAAAAA 12
ACOSH 14
AI 15
AIE 16
ALBETA 17
ALGAMS 18
ALI 19
ALNGAM 20
ALNREL 21
ASINH 22
ATANH 23
AVINT 24
BAKVEC 26
BALANC 28
BALBAK 30
BANDR 32
BANDV 34
BESI 37
BESI0 39
BESI0E 40
BESI1 41
BESI1E 42
BESJ 43
BESJ0 45
BESJ1 46
BESK 47
BESK0 49
BESK0E 50
BESK1 51
BESK1E 52
BESKES 53
BESKNU 54
BESKS 56
BESY 57
BESY0 59
BESY1 60
BETA 61
BETAI 62

SLATEC2 (AAAAAA through D9UPAK) - 2

BFQAD 63
BI 65
BIE 66
BINOM 68
BINT4 69
BINTK 71
BISECT 73
BLKTRI 75
BNDACC 79
BNDSOL 83
BQR 87
BSKIN 89
BSPDOC 91
BSPDR 96
BSPEV 98
BSPPP 100
BSPVD 102
BSPVN 104
BSQAD 106
BVALU 107
BVSUP 109
C0LGMC 116
CACOS 117
CACOSH 118
CAIRY 119
CARG 122
CASIN 123
CASINH 124
CATAN 125
CATAN2 126
CATANH 127
CAXPY 128
CBABK2 129
CBAL 131
CBESH 133
CBESI 136
CBESJ 139
CBESK 142
CBESY 145
CBETA 148
CBIRY 149
CBLKTR 152
CBRT 156
CCBRT 157
CCHDC 158
CCHDD 160

SLATEC2 (AAAAAA through D9UPAK) - 3

CCHEX 163
CCHUD 166
CCOPY 168
CCOSH 169
CCOT 170
CDCDOT 171
CDOTC 172
CDOTU 173
CDRIV1 174
CDRIV2 179
CDRIV3 185
CEXPRL 198
CFFTB1 199
CFFTF1 201
CFFTI 203
CFFTI1 204
CG 205
CGAMMA 207
CGAMR 208
CGBCO 209
CGBDI 212
CGBFA 213
CGBMV 215
CGBSL 218
CGECO 220
CGEDI 222
CGEEV 224
CGEFA 226
CGEFS 228
CGEIR 230
CGEMM 232
CGEMV 235
CGERC 237
CGERU 239
CGESL 241
CGTSL 243
CH 245
CHBMV 247
CHEMM 250
CHEMV 253
CHER 255
CHER2 257
CHER2K 259
CHERK 262
CHFDV 265
CHFEV 267

SLATEC2 (AAAAAA through D9UPAK) - 4

CHICO 269
CHIDI 271
CHIEV 273
CHIFA 275
CHISL 277
CHKDER 279
CHPCO 281
CHPDI 283
CHPFA 285
CHPMV 287
CHPR 289
CHPR2 291
CHPSL 293
CHU 295
CINVIT 296
CLBETA 298
CLNGAM 299
CLNREL 300
CLOG10 301
CMGNBN 302
CNBCO 306
CNBDI 309
CNBFA 310
CNBFS 312
CNBIR 315
CNBSL 318
COMBAK 320
COMHES 322
COMLR 324
COMLR2 326
COMQR 328
COMQR2 330
CORTB 332
CORTH 334
COSDG 336
COSQB 337
COSQF 339
COSQI 341
COST 342
COSTI 344
COT 345
CPBCO 346
CPBDI 348
CPBFA 349
CPBSL 351
CPOCO 353

SLATEC2 (AAAAAA through D9UPAK) - 5

CPODI 355
CPOFA 357
CPOFS 358
CPOIR 360
CPOSL 362
CPPCO 364
CPPDI 366
CPPFA 368
CPPSL 370
CPQR79 372
CPSI 373
CPTSL 374
CPZERO 375
CQRDC 376
CQRSL 378
CROTG 381
CSCAL 382
CSEVL 383
CSICO 384
CSIDI 386
CSIFA 388
CSINH 390
CSISL 391
CSPCO 393
CSPDI 395
CSPFA 397
CSPSL 399
CSROT 401
CSSCAL 402
CSVDC 403
CSWAP 405
CSYMM 406
CSYR2K 409
CSYRK 412
CTAN 414
CTANH 415
CTBMV 416
CTBSV 419
CTPMV 422
CTPSV 424
CTRCO 426
CTRDI 428
CTRMM 430
CTRMV 433
CTRSL 435
CTRSM 437

SLATEC2 (AAAAAA through D9UPAK) - 6

CTRSV 440
CV 442
D1MACH 444
D9PAK 446
D9UPAK 447

Disclaimer 448
Structural Keyword Index 449
Date and Revisions 454

SLATEC2 (AAAAAA through D9UPAK) - 7

Preface

Scope: SLATEC2 contains brief descriptions ("prologues") for the SLATEC (version 4.1)
mathematical library subroutines with names from AAAAAA through D9UPAK.

Availability: The SLATEC library is downloadable through LINMath (URL:
http://www.llnl.gov/LCdocs/nmg1) and can be run on all LC production computers.

Consultant: For help contact the LC customer service and support hotline at 925-422-4531 (open
e-mail: lc-hotline@llnl.gov, secure e-mail: lc-hotline@pop.scf.cln).

Printing: The print file for this document can be found at:

on the OCF: http://www.llnl.gov/LCdocs/slatec2/slatec2.pdf
on the SCF: https://lc.llnl.gov/LCdocs/slatec2/slatec2_scf.pdf

SLATEC2 (AAAAAA through D9UPAK) - 8

http://www.llnl.gov/LCdocs/nmg1
http://www.llnl.gov/LCdocs/slatec2/slatec2.pdf

Introduction

Using SLATEC Documentation
Over 1600 pages of online documentation describe the 902 user-callable subroutines available in version

4.1 of the SLATEC library. Because of this unwieldy bulk, the documentation is published in five separate,
but interrelated, volumes:

SLATEC1 provides introductory information on the whole library, explains the subject categories
into which the SLATEC routines are grouped, and includes short descriptions of all
routines (alphabetical within each subject category). Every category code is also a
link (keyword) for retrieving the brief descriptions of the included routines. SLATEC1
provides the only way to compare related routines by the tasks they perform, rather
than just by name.

SLATEC2 (THIS DOCUMENT) contains the calling sequence and usage details for each of the
225 subroutines from AAAAAA through D9UPAK, arranged alphabetically by name.
Every subroutine name is also a link (keyword) for retrieving the corresponding
description if you start at the index.

SLATEC3 contains the calling sequence and usage details for each of the 225 subroutines from
DACOSH through DS2Y, arranged alphabetically by name. Every subroutine name
is also a link (keyword) for retrieving the corresponding description if you start at the
index.

SLATEC4 contains the calling sequence and usage details for each of the 226 subroutines from
DSBMV through RD, arranged alphabetically by name. Every subroutine name is
also a link (keyword) for retrieving the corresponding description if you start at the
index.

SLATEC5 contains the calling sequence and usage details for each of the 226 subroutines from
REBAK through ZBIRY, arranged alphabetically by name. Every subroutine name
is also a link (keyword) for retrieving the corresponding description if you start at the
index.

You can consult any of these documents from any open machine by running your choice of WWW
client and selecting the document you want from the descriptive LC collection directory available at . Or
you can specifically request the URL

 http://www.llnl.gov/LCdocs/slatecn

where slatecn is any one of slatec1 through slatec5, depending on which volume you want.

Loading SLATEC Under UNICOS
On LC machines, the SLATEC math library file is called LIBSLATEC.A and has the full pathname

SLATEC2 (AAAAAA through D9UPAK) - 9

http://www.llnl.gov/LCdocs/slatec1
http://www.llnl.gov/LCdocs/slatec2
http://www.llnl.gov/LCdocs/slatec3
http://www.llnl.gov/LCdocs/slatec4
http://www.llnl.gov/LCdocs/slatec5

 /usr/local/lib/libslatec.a
The routines in LIBSLATEC.A may use externals in LIBSCI for optimization, and that library is on the
default search path (loaded automatically) under UNICOS.

SLATEC2 (AAAAAA through D9UPAK) - 10

Subroutine Descriptions

SLATEC2 (AAAAAA through D9UPAK) - 11

AAAAAA

 SUBROUTINE AAAAAA (VER)
 ***BEGIN PROLOGUE AAAAAA
 ***PURPOSE SLATEC Common Mathematical Library disclaimer and version.
 ***LIBRARY SLATEC
 ***CATEGORY Z
 ***TYPE ALL (AAAAAA-A)
 ***KEYWORDS DISCLAIMER, DOCUMENTATION, VERSION
 ***AUTHOR SLATEC Common Mathematical Library Committee
 ***DESCRIPTION

 The SLATEC Common Mathematical Library is issued by the following

 Air Force Weapons Laboratory, Albuquerque
 Lawrence Livermore National Laboratory, Livermore
 Los Alamos National Laboratory, Los Alamos
 National Institute of Standards and Technology, Washington
 National Energy Research Supercomputer Center, Livermore
 Oak Ridge National Laboratory, Oak Ridge
 Sandia National Laboratories, Albuquerque
 Sandia National Laboratories, Livermore

 All questions concerning the distribution of the library should be
 directed to the NATIONAL ENERGY SOFTWARE CENTER, 9700 Cass Ave.,
 Argonne, Illinois 60439, and not to the authors of the subprograms.

 * * * * * Notice * * * * *

 This material was prepared as an account of work sponsored by the
 United States Government. Neither the United States, nor the
 Department of Energy, nor the Department of Defense, nor any of
 their employees, nor any of their contractors, subcontractors, or
 their employees, makes any warranty, expressed or implied, or
 assumes any legal liability or responsibility for the accuracy,
 completeness, or usefulness of any information, apparatus, product,
 or process disclosed, or represents that its use would not infringe
 upon privately owned rights.

 *Usage:

 CHARACTER * 16 VER

 CALL AAAAAA (VER)

 *Arguments:

 VER:OUT will contain the version number of the SLATEC CML.

 *Description:

 This routine contains the SLATEC Common Mathematical Library
 disclaimer and can be used to return the library version number.

 ***REFERENCES Kirby W. Fong, Thomas H. Jefferson, Tokihiko Suyehiro
 and Lee Walton, Guide to the SLATEC Common Mathema-
 tical Library, April 10, 1990.
 ***ROUTINES CALLED (NONE)

SLATEC2 (AAAAAA through D9UPAK) - 12

 ***REVISION HISTORY (YYMMDD)
 800424 DATE WRITTEN
 890414 REVISION DATE from Version 3.2
 890713 Routine modified to return version number. (WRB)
 900330 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 921215 Updated for Version 4.0. (WRB)
 930701 Updated for Version 4.1. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 13

ACOSH

 FUNCTION ACOSH (X)
 ***BEGIN PROLOGUE ACOSH
 ***PURPOSE Compute the arc hyperbolic cosine.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C4C
 ***TYPE SINGLE PRECISION (ACOSH-S, DACOSH-D, CACOSH-C)
 ***KEYWORDS ACOSH, ARC HYPERBOLIC COSINE, ELEMENTARY FUNCTIONS, FNLIB,
 INVERSE HYPERBOLIC COSINE
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 ACOSH(X) computes the arc hyperbolic cosine of X.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770401 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 14

AI

 FUNCTION AI (X)
 ***BEGIN PROLOGUE AI
 ***PURPOSE Evaluate the Airy function.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C10D
 ***TYPE SINGLE PRECISION (AI-S, DAI-D)
 ***KEYWORDS AIRY FUNCTION, FNLIB, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 AI(X) computes the Airy function Ai(X)
 Series for AIF on the interval -1.00000D+00 to 1.00000D+00
 with weighted error 1.09E-19
 log weighted error 18.96
 significant figures required 17.76
 decimal places required 19.44

 Series for AIG on the interval -1.00000D+00 to 1.00000D+00
 with weighted error 1.51E-17
 log weighted error 16.82
 significant figures required 15.19
 decimal places required 17.27

 ***REFERENCES (NONE)
 ***ROUTINES CALLED AIE, CSEVL, INITS, R1MACH, R9AIMP, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920618 Removed space from variable names. (RWC, WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 15

AIE

 FUNCTION AIE (X)
 ***BEGIN PROLOGUE AIE
 ***PURPOSE Calculate the Airy function for a negative argument and an
 exponentially scaled Airy function for a non-negative
 argument.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C10D
 ***TYPE SINGLE PRECISION (AIE-S, DAIE-D)
 ***KEYWORDS EXPONENTIALLY SCALED AIRY FUNCTION, FNLIB,
 SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 AIE(X) computes the exponentially scaled Airy function for
 non-negative X. It evaluates AI(X) for X .LE. 0.0 and
 EXP(ZETA)*AI(X) for X .GE. 0.0 where ZETA = (2.0/3.0)*(X**1.5).

 Series for AIF on the interval -1.00000D+00 to 1.00000D+00
 with weighted error 1.09E-19
 log weighted error 18.96
 significant figures required 17.76
 decimal places required 19.44

 Series for AIG on the interval -1.00000D+00 to 1.00000D+00
 with weighted error 1.51E-17
 log weighted error 16.82
 significant figures required 15.19
 decimal places required 17.27

 Series for AIP on the interval 0. to 1.00000D+00
 with weighted error 5.10E-17
 log weighted error 16.29
 significant figures required 14.41
 decimal places required 17.06

 ***REFERENCES (NONE)
 ***ROUTINES CALLED CSEVL, INITS, R1MACH, R9AIMP
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 890206 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920618 Removed space from variable names. (RWC, WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 16

ALBETA

 FUNCTION ALBETA (A, B)
 ***BEGIN PROLOGUE ALBETA
 ***PURPOSE Compute the natural logarithm of the complete Beta
 function.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C7B
 ***TYPE SINGLE PRECISION (ALBETA-S, DLBETA-D, CLBETA-C)
 ***KEYWORDS FNLIB, LOGARITHM OF THE COMPLETE BETA FUNCTION,
 SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 ALBETA computes the natural log of the complete beta function.

 Input Parameters:
 A real and positive
 B real and positive

 ***REFERENCES (NONE)
 ***ROUTINES CALLED ALNGAM, ALNREL, GAMMA, R9LGMC, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 900727 Added EXTERNAL statement. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 17

ALGAMS

 SUBROUTINE ALGAMS (X, ALGAM, SGNGAM)
 ***BEGIN PROLOGUE ALGAMS
 ***PURPOSE Compute the logarithm of the absolute value of the Gamma
 function.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C7A
 ***TYPE SINGLE PRECISION (ALGAMS-S, DLGAMS-D)
 ***KEYWORDS ABSOLUTE VALUE OF THE LOGARITHM OF THE GAMMA FUNCTION,
 FNLIB, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 Evaluates the logarithm of the absolute value of the gamma
 function.
 X - input argument
 ALGAM - result
 SGNGAM - is set to the sign of GAMMA(X) and will
 be returned at +1.0 or -1.0.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED ALNGAM
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 18

ALI

 FUNCTION ALI (X)
 ***BEGIN PROLOGUE ALI
 ***PURPOSE Compute the logarithmic integral.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C5
 ***TYPE SINGLE PRECISION (ALI-S, DLI-D)
 ***KEYWORDS FNLIB, LOGARITHMIC INTEGRAL, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 ALI(X) computes the logarithmic integral; i.e., the
 integral from 0.0 to X of (1.0/ln(t))dt.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED EI, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 19

ALNGAM

 FUNCTION ALNGAM (X)
 ***BEGIN PROLOGUE ALNGAM
 ***PURPOSE Compute the logarithm of the absolute value of the Gamma
 function.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C7A
 ***TYPE SINGLE PRECISION (ALNGAM-S, DLNGAM-D, CLNGAM-C)
 ***KEYWORDS ABSOLUTE VALUE, COMPLETE GAMMA FUNCTION, FNLIB, LOGARITHM,
 SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 ALNGAM(X) computes the logarithm of the absolute value of the
 gamma function at X.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED GAMMA, R1MACH, R9LGMC, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 900727 Added EXTERNAL statement. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 20

ALNREL

 FUNCTION ALNREL (X)
 ***BEGIN PROLOGUE ALNREL
 ***PURPOSE Evaluate ln(1+X) accurate in the sense of relative error.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C4B
 ***TYPE SINGLE PRECISION (ALNREL-S, DLNREL-D, CLNREL-C)
 ***KEYWORDS ELEMENTARY FUNCTIONS, FNLIB, LOGARITHM
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 ALNREL(X) evaluates ln(1+X) accurately in the sense of relative
 error when X is very small. This routine must be used to
 maintain relative error accuracy whenever X is small and
 accurately known.

 Series for ALNR on the interval -3.75000D-01 to 3.75000D-01
 with weighted error 1.93E-17
 log weighted error 16.72
 significant figures required 16.44
 decimal places required 17.40

 ***REFERENCES (NONE)
 ***ROUTINES CALLED CSEVL, INITS, R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770401 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 21

ASINH

 FUNCTION ASINH (X)
 ***BEGIN PROLOGUE ASINH
 ***PURPOSE Compute the arc hyperbolic sine.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C4C
 ***TYPE SINGLE PRECISION (ASINH-S, DASINH-D, CASINH-C)
 ***KEYWORDS ARC HYPERBOLIC SINE, ASINH, ELEMENTARY FUNCTIONS, FNLIB,
 INVERSE HYPERBOLIC SINE
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 ASINH(X) computes the arc hyperbolic sine of X.

 Series for ASNH on the interval 0. to 1.00000D+00
 with weighted error 2.19E-17
 log weighted error 16.66
 significant figures required 15.60
 decimal places required 17.31

 ***REFERENCES (NONE)
 ***ROUTINES CALLED CSEVL, INITS, R1MACH
 ***REVISION HISTORY (YYMMDD)
 770401 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 22

ATANH

 FUNCTION ATANH (X)
 ***BEGIN PROLOGUE ATANH
 ***PURPOSE Compute the arc hyperbolic tangent.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C4C
 ***TYPE SINGLE PRECISION (ATANH-S, DATANH-D, CATANH-C)
 ***KEYWORDS ARC HYPERBOLIC TANGENT, ATANH, ELEMENTARY FUNCTIONS,
 FNLIB, INVERSE HYPERBOLIC TANGENT
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 ATANH(X) computes the arc hyperbolic tangent of X.

 Series for ATNH on the interval 0. to 2.50000D-01
 with weighted error 6.70E-18
 log weighted error 17.17
 significant figures required 16.01
 decimal places required 17.76

 ***REFERENCES (NONE)
 ***ROUTINES CALLED CSEVL, INITS, R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770401 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 23

AVINT

 SUBROUTINE AVINT (X, Y, N, XLO, XUP, ANS, IERR)
 ***BEGIN PROLOGUE AVINT
 ***PURPOSE Integrate a function tabulated at arbitrarily spaced
 abscissas using overlapping parabolas.
 ***LIBRARY SLATEC
 ***CATEGORY H2A1B2
 ***TYPE SINGLE PRECISION (AVINT-S, DAVINT-D)
 ***KEYWORDS INTEGRATION, QUADRATURE, TABULATED DATA
 ***AUTHOR Jones, R. E., (SNLA)
 ***DESCRIPTION

 Abstract
 AVINT integrates a function tabulated at arbitrarily spaced
 abscissas. The limits of integration need not coincide
 with the tabulated abscissas.

 A method of overlapping parabolas fitted to the data is used
 provided that there are at least 3 abscissas between the
 limits of integration. AVINT also handles two special cases.
 If the limits of integration are equal, AVINT returns a result
 of zero regardless of the number of tabulated values.
 If there are only two function values, AVINT uses the
 trapezoid rule.

 Description of Parameters
 The user must dimension all arrays appearing in the call list
 X(N), Y(N).

 Input--
 X - real array of abscissas, which must be in increasing
 order.
 Y - real array of functional values. i.e., Y(I)=FUNC(X(I)).
 N - the integer number of function values supplied.
 N .GE. 2 unless XLO = XUP.
 XLO - real lower limit of integration.
 XUP - real upper limit of integration.
 Must have XLO .LE. XUP.

 Output--
 ANS - computed approximate value of integral
 IERR - a status code
 --normal code
 =1 means the requested integration was performed.
 --abnormal codes
 =2 means XUP was less than XLO.
 =3 means the number of X(I) between XLO and XUP
 (inclusive) was less than 3 and neither of the two
 special cases described in the Abstract occurred.
 No integration was performed.
 =4 means the restriction X(I+1) .GT. X(I) was violated.
 =5 means the number N of function values was .LT. 2.
 ANS is set to zero if IERR=2,3,4,or 5.

 AVINT is documented completely in SC-M-69-335
 Original program from "Numerical Integration" by Davis &
 Rabinowitz.

SLATEC2 (AAAAAA through D9UPAK) - 24

 Adaptation and modifications for Sandia Mathematical Program
 Library by Rondall E. Jones.

 ***REFERENCES R. E. Jones, Approximate integrator of functions
 tabulated at arbitrarily spaced abscissas,
 Report SC-M-69-335, Sandia Laboratories, 1969.
 ***ROUTINES CALLED XERMSG
 ***REVISION HISTORY (YYMMDD)
 690901 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 25

BAKVEC

 SUBROUTINE BAKVEC (NM, N, T, E, M, Z, IERR)
 ***BEGIN PROLOGUE BAKVEC
 ***PURPOSE Form the eigenvectors of a certain real non-symmetric
 tridiagonal matrix from a symmetric tridiagonal matrix
 output from FIGI.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4C4
 ***TYPE SINGLE PRECISION (BAKVEC-S)
 ***KEYWORDS EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine forms the eigenvectors of a NONSYMMETRIC
 TRIDIAGONAL matrix by back transforming those of the
 corresponding symmetric matrix determined by FIGI.

 On INPUT

 NM must be set to the row dimension of the two-dimensional
 array parameters, T and Z, as declared in the calling
 program dimension statement. NM is an INTEGER variable.

 N is the order of the matrix T. N is an INTEGER variable.
 N must be less than or equal to NM.

 T contains the nonsymmetric matrix. Its subdiagonal is
 stored in the last N-1 positions of the first column,
 its diagonal in the N positions of the second column,
 and its superdiagonal in the first N-1 positions of
 the third column. T(1,1) and T(N,3) are arbitrary.
 T is a two-dimensional REAL array, dimensioned T(NM,3).

 E contains the subdiagonal elements of the symmetric
 matrix in its last N-1 positions. E(1) is arbitrary.
 E is a one-dimensional REAL array, dimensioned E(N).

 M is the number of eigenvectors to be back transformed.
 M is an INTEGER variable.

 Z contains the eigenvectors to be back transformed
 in its first M columns. Z is a two-dimensional REAL
 array, dimensioned Z(NM,M).

 On OUTPUT

 T is unaltered.

 E is destroyed.

 Z contains the transformed eigenvectors in its first M columns.

 IERR is an INTEGER flag set to
 Zero for normal return,
 2*N+I if E(I) is zero with T(I,1) or T(I-1,3) non-zero.
 In this case, the symmetric matrix is not similar
 to the original matrix, and the eigenvectors

SLATEC2 (AAAAAA through D9UPAK) - 26

 cannot be found by this program.

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 27

BALANC

 SUBROUTINE BALANC (NM, N, A, LOW, IGH, SCALE)
 ***BEGIN PROLOGUE BALANC
 ***PURPOSE Balance a real general matrix and isolate eigenvalues
 whenever possible.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4C1A
 ***TYPE SINGLE PRECISION (BALANC-S, CBAL-C)
 ***KEYWORDS EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of the ALGOL procedure BALANCE,
 NUM. MATH. 13, 293-304(1969) by Parlett and Reinsch.
 HANDBOOK FOR AUTO. COMP., Vol.II-LINEAR ALGEBRA, 315-326(1971).

 This subroutine balances a REAL matrix and isolates
 eigenvalues whenever possible.

 On INPUT

 NM must be set to the row dimension of the two-dimensional
 array parameter, A, as declared in the calling program
 dimension statement. NM is an INTEGER variable.

 N is the order of the matrix A. N is an INTEGER variable.
 N must be less than or equal to NM.

 A contains the input matrix to be balanced. A is a
 two-dimensional REAL array, dimensioned A(NM,N).

 On OUTPUT

 A contains the balanced matrix.

 LOW and IGH are two INTEGER variables such that A(I,J)
 is equal to zero if
 (1) I is greater than J and
 (2) J=1,...,LOW-1 or I=IGH+1,...,N.

 SCALE contains information determining the permutations and
 scaling factors used. SCALE is a one-dimensional REAL array,
 dimensioned SCALE(N).

 Suppose that the principal submatrix in rows LOW through IGH
 has been balanced, that P(J) denotes the index interchanged
 with J during the permutation step, and that the elements
 of the diagonal matrix used are denoted by D(I,J). Then
 SCALE(J) = P(J), for J = 1,...,LOW-1
 = D(J,J), J = LOW,...,IGH
 = P(J) J = IGH+1,...,N.
 The order in which the interchanges are made is N to IGH+1,
 then 1 TO LOW-1.

 Note that 1 is returned for IGH if IGH is zero formally.

 The ALGOL procedure EXC contained in BALANCE appears in

SLATEC2 (AAAAAA through D9UPAK) - 28

 BALANC in line. (Note that the ALGOL roles of identifiers
 K,L have been reversed.)

 Questions and comments should be directed to B. S. Garbow,
 Applied Mathematics Division, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 29

BALBAK

 SUBROUTINE BALBAK (NM, N, LOW, IGH, SCALE, M, Z)
 ***BEGIN PROLOGUE BALBAK
 ***PURPOSE Form the eigenvectors of a real general matrix from the
 eigenvectors of matrix output from BALANC.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4C4
 ***TYPE SINGLE PRECISION (BALBAK-S, CBABK2-C)
 ***KEYWORDS EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of the ALGOL procedure BALBAK,
 NUM. MATH. 13, 293-304(1969) by Parlett and Reinsch.
 HANDBOOK FOR AUTO. COMP., Vol.II-LINEAR ALGEBRA, 315-326(1971).

 This subroutine forms the eigenvectors of a REAL GENERAL
 matrix by back transforming those of the corresponding
 balanced matrix determined by BALANC.

 On INPUT

 NM must be set to the row dimension of the two-dimensional
 array parameter, Z, as declared in the calling program
 dimension statement. NM is an INTEGER variable.

 N is the number of components of the vectors in matrix Z.
 N is an INTEGER variable. N must be less than or equal
 to NM.

 LOW and IGH are INTEGER variables determined by BALANC.

 SCALE contains information determining the permutations and
 scaling factors used by BALANC. SCALE is a one-dimensional
 REAL array, dimensioned SCALE(N).

 M is the number of columns of Z to be back transformed.
 M is an INTEGER variable.

 Z contains the real and imaginary parts of the eigen-
 vectors to be back transformed in its first M columns.
 Z is a two-dimensional REAL array, dimensioned Z(NM,M).

 On OUTPUT

 Z contains the real and imaginary parts of the
 transformed eigenvectors in its first M columns.

 Questions and comments should be directed to B. S. Garbow,
 Applied Mathematics Division, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED (NONE)

SLATEC2 (AAAAAA through D9UPAK) - 30

 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 31

BANDR

 SUBROUTINE BANDR (NM, N, MB, A, D, E, E2, MATZ, Z)
 ***BEGIN PROLOGUE BANDR
 ***PURPOSE Reduce a real symmetric band matrix to symmetric
 tridiagonal matrix and, optionally, accumulate
 orthogonal similarity transformations.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4C1B1
 ***TYPE SINGLE PRECISION (BANDR-S)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of the ALGOL procedure BANDRD,
 NUM. MATH. 12, 231-241(1968) by Schwarz.
 HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 273-283(1971).

 This subroutine reduces a REAL SYMMETRIC BAND matrix
 to a symmetric tridiagonal matrix using and optionally
 accumulating orthogonal similarity transformations.

 On INPUT

 NM must be set to the row dimension of the two-dimensional
 array parameters, A and Z, as declared in the calling
 program dimension statement. NM is an INTEGER variable.

 N is the order of the matrix A. N is an INTEGER variable.
 N must be less than or equal to NM.

 MB is the (half) band width of the matrix, defined as the
 number of adjacent diagonals, including the principal
 diagonal, required to specify the non-zero portion of the
 lower triangle of the matrix. MB is less than or equal
 to N. MB is an INTEGER variable.

 A contains the lower triangle of the real symmetric band
 matrix. Its lowest subdiagonal is stored in the last
 N+1-MB positions of the first column, its next subdiagonal
 in the last N+2-MB positions of the second column, further
 subdiagonals similarly, and finally its principal diagonal
 in the N positions of the last column. Contents of storage
 locations not part of the matrix are arbitrary. A is a
 two-dimensional REAL array, dimensioned A(NM,MB).

 MATZ should be set to .TRUE. if the transformation matrix is
 to be accumulated, and to .FALSE. otherwise. MATZ is a
 LOGICAL variable.

 On OUTPUT

 A has been destroyed, except for its last two columns which
 contain a copy of the tridiagonal matrix.

 D contains the diagonal elements of the tridiagonal matrix.
 D is a one-dimensional REAL array, dimensioned D(N).

SLATEC2 (AAAAAA through D9UPAK) - 32

 E contains the subdiagonal elements of the tridiagonal
 matrix in its last N-1 positions. E(1) is set to zero.
 E is a one-dimensional REAL array, dimensioned E(N).

 E2 contains the squares of the corresponding elements of E.
 E2 may coincide with E if the squares are not needed.
 E2 is a one-dimensional REAL array, dimensioned E2(N).

 Z contains the orthogonal transformation matrix produced in
 the reduction if MATZ has been set to .TRUE. Otherwise, Z
 is not referenced. Z is a two-dimensional REAL array,
 dimensioned Z(NM,N).

 Questions and comments should be directed to B. S. Garbow,
 Applied Mathematics Division, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 33

BANDV

 SUBROUTINE BANDV (NM, N, MBW, A, E21, M, W, Z, IERR, NV, RV, RV6)
 ***BEGIN PROLOGUE BANDV
 ***PURPOSE Form the eigenvectors of a real symmetric band matrix
 associated with a set of ordered approximate eigenvalues
 by inverse iteration.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4C3
 ***TYPE SINGLE PRECISION (BANDV-S)
 ***KEYWORDS EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine finds those eigenvectors of a REAL SYMMETRIC
 BAND matrix corresponding to specified eigenvalues, using inverse
 iteration. The subroutine may also be used to solve systems
 of linear equations with a symmetric or non-symmetric band
 coefficient matrix.

 On INPUT

 NM must be set to the row dimension of the two-dimensional
 array parameters, A and Z, as declared in the calling
 program dimension statement. NM is an INTEGER variable.

 N is the order of the matrix A. N is an INTEGER variable.
 N must be less than or equal to NM.

 MBW is the number of columns of the array A used to store the
 band matrix. If the matrix is symmetric, MBW is its (half)
 band width, denoted MB and defined as the number of adjacent
 diagonals, including the principal diagonal, required to
 specify the non-zero portion of the lower triangle of the
 matrix. If the subroutine is being used to solve systems
 of linear equations and the coefficient matrix is not
 symmetric, it must however have the same number of adjacent
 diagonals above the main diagonal as below, and in this
 case, MBW=2*MB-1. MBW is an INTEGER variable. MB must not
 be greater than N.

 A contains the lower triangle of the symmetric band input
 matrix stored as an N by MB array. Its lowest subdiagonal
 is stored in the last N+1-MB positions of the first column,
 its next subdiagonal in the last N+2-MB positions of the
 second column, further subdiagonals similarly, and finally
 its principal diagonal in the N positions of column MB.
 If the subroutine is being used to solve systems of linear
 equations and the coefficient matrix is not symmetric, A is
 N by 2*MB-1 instead with lower triangle as above and with
 its first superdiagonal stored in the first N-1 positions of
 column MB+1, its second superdiagonal in the first N-2
 positions of column MB+2, further superdiagonals similarly,
 and finally its highest superdiagonal in the first N+1-MB
 positions of the last column. Contents of storage locations
 not part of the matrix are arbitrary. A is a two-dimensional
 REAL array, dimensioned A(NM,MBW).

SLATEC2 (AAAAAA through D9UPAK) - 34

 E21 specifies the ordering of the eigenvalues and contains
 0.0E0 if the eigenvalues are in ascending order, or
 2.0E0 if the eigenvalues are in descending order.
 If the subroutine is being used to solve systems of linear
 equations, E21 should be set to 1.0E0 if the coefficient
 matrix is symmetric and to -1.0E0 if not. E21 is a REAL
 variable.

 M is the number of specified eigenvalues or the number of
 systems of linear equations. M is an INTEGER variable.

 W contains the M eigenvalues in ascending or descending order.
 If the subroutine is being used to solve systems of linear
 equations (A-W(J)*I)*X(J)=B(J), where I is the identity
 matrix, W(J) should be set accordingly, for J=1,2,...,M.
 W is a one-dimensional REAL array, dimensioned W(M).

 Z contains the constant matrix columns (B(J),J=1,2,...,M), if
 the subroutine is used to solve systems of linear equations.
 Z is a two-dimensional REAL array, dimensioned Z(NM,M).

 NV must be set to the dimension of the array parameter RV
 as declared in the calling program dimension statement.
 NV is an INTEGER variable.

 On OUTPUT

 A and W are unaltered.

 Z contains the associated set of orthogonal eigenvectors.
 Any vector which fails to converge is set to zero. If the
 subroutine is used to solve systems of linear equations,
 Z contains the solution matrix columns (X(J),J=1,2,...,M).

 IERR is an INTEGER flag set to
 Zero for normal return,
 -J if the eigenvector corresponding to the J-th
 eigenvalue fails to converge, or if the J-th
 system of linear equations is nearly singular.

 RV and RV6 are temporary storage arrays. If the subroutine
 is being used to solve systems of linear equations, the
 determinant (up to sign) of A-W(M)*I is available, upon
 return, as the product of the first N elements of RV.
 RV and RV6 are one-dimensional REAL arrays. Note that RV
 is dimensioned RV(NV), where NV must be at least N*(2*MB-1).
 RV6 is dimensioned RV6(N).

 Questions and comments should be directed to B. S. Garbow,
 Applied Mathematics Division, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)

SLATEC2 (AAAAAA through D9UPAK) - 35

 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 36

BESI

 SUBROUTINE BESI (X, ALPHA, KODE, N, Y, NZ)
 ***BEGIN PROLOGUE BESI
 ***PURPOSE Compute an N member sequence of I Bessel functions
 I/SUB(ALPHA+K-1)/(X), K=1,...,N or scaled Bessel functions
 EXP(-X)*I/SUB(ALPHA+K-1)/(X), K=1,...,N for non-negative
 ALPHA and X.
 ***LIBRARY SLATEC
 ***CATEGORY C10B3
 ***TYPE SINGLE PRECISION (BESI-S, DBESI-D)
 ***KEYWORDS I BESSEL FUNCTION, SPECIAL FUNCTIONS
 ***AUTHOR Amos, D. E., (SNLA)
 Daniel, S. L., (SNLA)
 ***DESCRIPTION

 Abstract
 BESI computes an N member sequence of I Bessel functions
 I/sub(ALPHA+K-1)/(X), K=1,...,N or scaled Bessel functions
 EXP(-X)*I/sub(ALPHA+K-1)/(X), K=1,...,N for non-negative ALPHA
 and X. A combination of the power series, the asymptotic
 expansion for X to infinity, and the uniform asymptotic
 expansion for NU to infinity are applied over subdivisions of
 the (NU,X) plane. For values not covered by one of these
 formulae, the order is incremented by an integer so that one
 of these formulae apply. Backward recursion is used to reduce
 orders by integer values. The asymptotic expansion for X to
 infinity is used only when the entire sequence (specifically
 the last member) lies within the region covered by the
 expansion. Leading terms of these expansions are used to test
 for over or underflow where appropriate. If a sequence is
 requested and the last member would underflow, the result is
 set to zero and the next lower order tried, etc., until a
 member comes on scale or all are set to zero. An overflow
 cannot occur with scaling.

 Description of Arguments

 Input
 X - X .GE. 0.0E0
 ALPHA - order of first member of the sequence,
 ALPHA .GE. 0.0E0
 KODE - a parameter to indicate the scaling option
 KODE=1 returns
 Y(K)= I/sub(ALPHA+K-1)/(X),
 K=1,...,N
 KODE=2 returns
 Y(K)=EXP(-X)*I/sub(ALPHA+K-1)/(X),
 K=1,...,N
 N - number of members in the sequence, N .GE. 1

 Output
 Y - a vector whose first N components contain
 values for I/sub(ALPHA+K-1)/(X) or scaled
 values for EXP(-X)*I/sub(ALPHA+K-1)/(X),
 K=1,...,N depending on KODE
 NZ - number of components of Y set to zero due to
 underflow,

SLATEC2 (AAAAAA through D9UPAK) - 37

 NZ=0 , normal return, computation completed
 NZ .NE. 0, last NZ components of Y set to zero,
 Y(K)=0.0E0, K=N-NZ+1,...,N.

 Error Conditions
 Improper input arguments - a fatal error
 Overflow with KODE=1 - a fatal error
 Underflow - a non-fatal error (NZ .NE. 0)

 ***REFERENCES D. E. Amos, S. L. Daniel and M. K. Weston, CDC 6600
 subroutines IBESS and JBESS for Bessel functions
 I(NU,X) and J(NU,X), X .GE. 0, NU .GE. 0, ACM
 Transactions on Mathematical Software 3, (1977),
 pp. 76-92.
 F. W. J. Olver, Tables of Bessel Functions of Moderate
 or Large Orders, NPL Mathematical Tables 6, Her
 Majesty's Stationery Office, London, 1962.
 ***ROUTINES CALLED ALNGAM, ASYIK, I1MACH, R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 750101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 38

BESI0

 FUNCTION BESI0 (X)
 ***BEGIN PROLOGUE BESI0
 ***PURPOSE Compute the hyperbolic Bessel function of the first kind
 of order zero.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C10B1
 ***TYPE SINGLE PRECISION (BESI0-S, DBESI0-D)
 ***KEYWORDS FIRST KIND, FNLIB, HYPERBOLIC BESSEL FUNCTION,
 MODIFIED BESSEL FUNCTION, ORDER ZERO, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 BESI0(X) computes the modified (hyperbolic) Bessel function
 of the first kind of order zero and real argument X.

 Series for BI0 on the interval 0. to 9.00000D+00
 with weighted error 2.46E-18
 log weighted error 17.61
 significant figures required 17.90
 decimal places required 18.15

 ***REFERENCES (NONE)
 ***ROUTINES CALLED BESI0E, CSEVL, INITS, R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770401 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 39

BESI0E

 FUNCTION BESI0E (X)
 ***BEGIN PROLOGUE BESI0E
 ***PURPOSE Compute the exponentially scaled modified (hyperbolic)
 Bessel function of the first kind of order zero.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C10B1
 ***TYPE SINGLE PRECISION (BESI0E-S, DBSI0E-D)
 ***KEYWORDS EXPONENTIALLY SCALED, FIRST KIND, FNLIB,
 HYPERBOLIC BESSEL FUNCTION, MODIFIED BESSEL FUNCTION,
 ORDER ZERO, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 BESI0E(X) calculates the exponentially scaled modified (hyperbolic)
 Bessel function of the first kind of order zero for real argument X;
 i.e., EXP(-ABS(X))*I0(X).

 Series for BI0 on the interval 0. to 9.00000D+00
 with weighted error 2.46E-18
 log weighted error 17.61
 significant figures required 17.90
 decimal places required 18.15

 Series for AI0 on the interval 1.25000D-01 to 3.33333D-01
 with weighted error 7.87E-17
 log weighted error 16.10
 significant figures required 14.69
 decimal places required 16.76

 Series for AI02 on the interval 0. to 1.25000D-01
 with weighted error 3.79E-17
 log weighted error 16.42
 significant figures required 14.86
 decimal places required 17.09

 ***REFERENCES (NONE)
 ***ROUTINES CALLED CSEVL, INITS, R1MACH
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 890313 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 40

BESI1

 FUNCTION BESI1 (X)
 ***BEGIN PROLOGUE BESI1
 ***PURPOSE Compute the modified (hyperbolic) Bessel function of the
 first kind of order one.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C10B1
 ***TYPE SINGLE PRECISION (BESI1-S, DBESI1-D)
 ***KEYWORDS FIRST KIND, FNLIB, HYPERBOLIC BESSEL FUNCTION,
 MODIFIED BESSEL FUNCTION, ORDER ONE, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 BESI1(X) calculates the modified (hyperbolic) Bessel function
 of the first kind of order one for real argument X.

 Series for BI1 on the interval 0. to 9.00000D+00
 with weighted error 2.40E-17
 log weighted error 16.62
 significant figures required 16.23
 decimal places required 17.14

 ***REFERENCES (NONE)
 ***ROUTINES CALLED BESI1E, CSEVL, INITS, R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770401 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 41

BESI1E

 FUNCTION BESI1E (X)
 ***BEGIN PROLOGUE BESI1E
 ***PURPOSE Compute the exponentially scaled modified (hyperbolic)
 Bessel function of the first kind of order one.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C10B1
 ***TYPE SINGLE PRECISION (BESI1E-S, DBSI1E-D)
 ***KEYWORDS EXPONENTIALLY SCALED, FIRST KIND, FNLIB,
 HYPERBOLIC BESSEL FUNCTION, MODIFIED BESSEL FUNCTION,
 ORDER ONE, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 BESI1E(X) calculates the exponentially scaled modified (hyperbolic)
 Bessel function of the first kind of order one for real argument X;
 i.e., EXP(-ABS(X))*I1(X).

 Series for BI1 on the interval 0. to 9.00000D+00
 with weighted error 2.40E-17
 log weighted error 16.62
 significant figures required 16.23
 decimal places required 17.14

 Series for AI1 on the interval 1.25000D-01 to 3.33333D-01
 with weighted error 6.98E-17
 log weighted error 16.16
 significant figures required 14.53
 decimal places required 16.82

 Series for AI12 on the interval 0. to 1.25000D-01
 with weighted error 3.55E-17
 log weighted error 16.45
 significant figures required 14.69
 decimal places required 17.12

 ***REFERENCES (NONE)
 ***ROUTINES CALLED CSEVL, INITS, R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770401 DATE WRITTEN
 890210 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920618 Removed space from variable names. (RWC, WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 42

BESJ

 SUBROUTINE BESJ (X, ALPHA, N, Y, NZ)
 ***BEGIN PROLOGUE BESJ
 ***PURPOSE Compute an N member sequence of J Bessel functions
 J/SUB(ALPHA+K-1)/(X), K=1,...,N for non-negative ALPHA
 and X.
 ***LIBRARY SLATEC
 ***CATEGORY C10A3
 ***TYPE SINGLE PRECISION (BESJ-S, DBESJ-D)
 ***KEYWORDS J BESSEL FUNCTION, SPECIAL FUNCTIONS
 ***AUTHOR Amos, D. E., (SNLA)
 Daniel, S. L., (SNLA)
 Weston, M. K., (SNLA)
 ***DESCRIPTION

 Abstract
 BESJ computes an N member sequence of J Bessel functions
 J/sub(ALPHA+K-1)/(X), K=1,...,N for non-negative ALPHA and X.
 A combination of the power series, the asymptotic expansion
 for X to infinity and the uniform asymptotic expansion for
 NU to infinity are applied over subdivisions of the (NU,X)
 plane. For values of (NU,X) not covered by one of these
 formulae, the order is incremented or decremented by integer
 values into a region where one of the formulae apply. Backward
 recursion is applied to reduce orders by integer values except
 where the entire sequence lies in the oscillatory region. In
 this case forward recursion is stable and values from the
 asymptotic expansion for X to infinity start the recursion
 when it is efficient to do so. Leading terms of the series
 and uniform expansion are tested for underflow. If a sequence
 is requested and the last member would underflow, the result
 is set to zero and the next lower order tried, etc., until a
 member comes on scale or all members are set to zero.
 Overflow cannot occur.

 Description of Arguments

 Input
 X - X .GE. 0.0E0
 ALPHA - order of first member of the sequence,
 ALPHA .GE. 0.0E0
 N - number of members in the sequence, N .GE. 1

 Output
 Y - a vector whose first N components contain
 values for J/sub(ALPHA+K-1)/(X), K=1,...,N
 NZ - number of components of Y set to zero due to
 underflow,
 NZ=0 , normal return, computation completed
 NZ .NE. 0, last NZ components of Y set to zero,
 Y(K)=0.0E0, K=N-NZ+1,...,N.

 Error Conditions
 Improper input arguments - a fatal error
 Underflow - a non-fatal error (NZ .NE. 0)

 ***REFERENCES D. E. Amos, S. L. Daniel and M. K. Weston, CDC 6600

SLATEC2 (AAAAAA through D9UPAK) - 43

 subroutines IBESS and JBESS for Bessel functions
 I(NU,X) and J(NU,X), X .GE. 0, NU .GE. 0, ACM
 Transactions on Mathematical Software 3, (1977),
 pp. 76-92.
 F. W. J. Olver, Tables of Bessel Functions of Moderate
 or Large Orders, NPL Mathematical Tables 6, Her
 Majesty's Stationery Office, London, 1962.
 ***ROUTINES CALLED ALNGAM, ASYJY, I1MACH, JAIRY, R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 750101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 44

BESJ0

 FUNCTION BESJ0 (X)
 ***BEGIN PROLOGUE BESJ0
 ***PURPOSE Compute the Bessel function of the first kind of order
 zero.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C10A1
 ***TYPE SINGLE PRECISION (BESJ0-S, DBESJ0-D)
 ***KEYWORDS BESSEL FUNCTION, FIRST KIND, FNLIB, ORDER ZERO,
 SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 BESJ0(X) calculates the Bessel function of the first kind of
 order zero for real argument X.

 Series for BJ0 on the interval 0. to 1.60000D+01
 with weighted error 7.47E-18
 log weighted error 17.13
 significant figures required 16.98
 decimal places required 17.68

 Series for BM0 on the interval 0. to 6.25000D-02
 with weighted error 4.98E-17
 log weighted error 16.30
 significant figures required 14.97
 decimal places required 16.96

 Series for BTH0 on the interval 0. to 6.25000D-02
 with weighted error 3.67E-17
 log weighted error 16.44
 significant figures required 15.53
 decimal places required 17.13

 ***REFERENCES (NONE)
 ***ROUTINES CALLED CSEVL, INITS, R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770401 DATE WRITTEN
 890210 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 45

BESJ1

 FUNCTION BESJ1 (X)
 ***BEGIN PROLOGUE BESJ1
 ***PURPOSE Compute the Bessel function of the first kind of order one.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C10A1
 ***TYPE SINGLE PRECISION (BESJ1-S, DBESJ1-D)
 ***KEYWORDS BESSEL FUNCTION, FIRST KIND, FNLIB, ORDER ONE,
 SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 BESJ1(X) calculates the Bessel function of the first kind of
 order one for real argument X.

 Series for BJ1 on the interval 0. to 1.60000D+01
 with weighted error 4.48E-17
 log weighted error 16.35
 significant figures required 15.77
 decimal places required 16.89

 Series for BM1 on the interval 0. to 6.25000D-02
 with weighted error 5.61E-17
 log weighted error 16.25
 significant figures required 14.97
 decimal places required 16.91

 Series for BTH1 on the interval 0. to 6.25000D-02
 with weighted error 4.10E-17
 log weighted error 16.39
 significant figures required 15.96
 decimal places required 17.08

 ***REFERENCES (NONE)
 ***ROUTINES CALLED CSEVL, INITS, R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 780601 DATE WRITTEN
 890210 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 46

BESK

 SUBROUTINE BESK (X, FNU, KODE, N, Y, NZ)
 ***BEGIN PROLOGUE BESK
 ***PURPOSE Implement forward recursion on the three term recursion
 relation for a sequence of non-negative order Bessel
 functions K/SUB(FNU+I-1)/(X), or scaled Bessel functions
 EXP(X)*K/SUB(FNU+I-1)/(X), I=1,...,N for real, positive
 X and non-negative orders FNU.
 ***LIBRARY SLATEC
 ***CATEGORY C10B3
 ***TYPE SINGLE PRECISION (BESK-S, DBESK-D)
 ***KEYWORDS K BESSEL FUNCTION, SPECIAL FUNCTIONS
 ***AUTHOR Amos, D. E., (SNLA)
 ***DESCRIPTION

 Abstract
 BESK implements forward recursion on the three term
 recursion relation for a sequence of non-negative order Bessel
 functions K/sub(FNU+I-1)/(X), or scaled Bessel functions
 EXP(X)*K/sub(FNU+I-1)/(X), I=1,...,N for real X .GT. 0.0E0 and
 non-negative orders FNU. If FNU .LT. NULIM, orders FNU and
 FNU+1 are obtained from BESKNU to start the recursion. If
 FNU .GE. NULIM, the uniform asymptotic expansion is used for
 orders FNU and FNU+1 to start the recursion. NULIM is 35 or
 70 depending on whether N=1 or N .GE. 2. Under and overflow
 tests are made on the leading term of the asymptotic expansion
 before any extensive computation is done.

 Description of Arguments

 Input
 X - X .GT. 0.0E0
 FNU - order of the initial K function, FNU .GE. 0.0E0
 KODE - a parameter to indicate the scaling option
 KODE=1 returns Y(I)= K/sub(FNU+I-1)/(X),
 I=1,...,N
 KODE=2 returns Y(I)=EXP(X)*K/sub(FNU+I-1)/(X),
 I=1,...,N
 N - number of members in the sequence, N .GE. 1

 Output
 y - a vector whose first n components contain values
 for the sequence
 Y(I)= K/sub(FNU+I-1)/(X), I=1,...,N or
 Y(I)=EXP(X)*K/sub(FNU+I-1)/(X), I=1,...,N
 depending on KODE
 NZ - number of components of Y set to zero due to
 underflow with KODE=1,
 NZ=0 , normal return, computation completed
 NZ .NE. 0, first NZ components of Y set to zero
 due to underflow, Y(I)=0.0E0, I=1,...,NZ

 Error Conditions
 Improper input arguments - a fatal error
 Overflow - a fatal error
 Underflow with KODE=1 - a non-fatal error (NZ .NE. 0)

SLATEC2 (AAAAAA through D9UPAK) - 47

 ***REFERENCES F. W. J. Olver, Tables of Bessel Functions of Moderate
 or Large Orders, NPL Mathematical Tables 6, Her
 Majesty's Stationery Office, London, 1962.
 N. M. Temme, On the numerical evaluation of the modified
 Bessel function of the third kind, Journal of
 Computational Physics 19, (1975), pp. 324-337.
 ***ROUTINES CALLED ASYIK, BESK0, BESK0E, BESK1, BESK1E, BESKNU,
 I1MACH, R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 790201 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 48

BESK0

 FUNCTION BESK0 (X)
 ***BEGIN PROLOGUE BESK0
 ***PURPOSE Compute the modified (hyperbolic) Bessel function of the
 third kind of order zero.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C10B1
 ***TYPE SINGLE PRECISION (BESK0-S, DBESK0-D)
 ***KEYWORDS FNLIB, HYPERBOLIC BESSEL FUNCTION,
 MODIFIED BESSEL FUNCTION, ORDER ZERO, SPECIAL FUNCTIONS,
 THIRD KIND
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 BESK0(X) calculates the modified (hyperbolic) Bessel function
 of the third kind of order zero for real argument X .GT. 0.0.

 Series for BK0 on the interval 0. to 4.00000D+00
 with weighted error 3.57E-19
 log weighted error 18.45
 significant figures required 17.99
 decimal places required 18.97

 ***REFERENCES (NONE)
 ***ROUTINES CALLED BESI0, BESK0E, CSEVL, INITS, R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770401 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 49

BESK0E

 FUNCTION BESK0E (X)
 ***BEGIN PROLOGUE BESK0E
 ***PURPOSE Compute the exponentially scaled modified (hyperbolic)
 Bessel function of the third kind of order zero.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C10B1
 ***TYPE SINGLE PRECISION (BESK0E-S, DBSK0E-D)
 ***KEYWORDS EXPONENTIALLY SCALED, FNLIB, HYPERBOLIC BESSEL FUNCTION,
 MODIFIED BESSEL FUNCTION, ORDER ZERO, SPECIAL FUNCTIONS,
 THIRD KIND
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 BESK0E(X) computes the exponentially scaled modified (hyperbolic)
 Bessel function of third kind of order zero for real argument
 X .GT. 0.0, i.e., EXP(X)*K0(X).

 Series for BK0 on the interval 0. to 4.00000D+00
 with weighted error 3.57E-19
 log weighted error 18.45
 significant figures required 17.99
 decimal places required 18.97

 Series for AK0 on the interval 1.25000D-01 to 5.00000D-01
 with weighted error 5.34E-17
 log weighted error 16.27
 significant figures required 14.92
 decimal places required 16.89

 Series for AK02 on the interval 0. to 1.25000D-01
 with weighted error 2.34E-17
 log weighted error 16.63
 significant figures required 14.67
 decimal places required 17.20

 ***REFERENCES (NONE)
 ***ROUTINES CALLED BESI0, CSEVL, INITS, R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770401 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 50

BESK1

 FUNCTION BESK1 (X)
 ***BEGIN PROLOGUE BESK1
 ***PURPOSE Compute the modified (hyperbolic) Bessel function of the
 third kind of order one.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C10B1
 ***TYPE SINGLE PRECISION (BESK1-S, DBESK1-D)
 ***KEYWORDS FNLIB, HYPERBOLIC BESSEL FUNCTION,
 MODIFIED BESSEL FUNCTION, ORDER ONE, SPECIAL FUNCTIONS,
 THIRD KIND
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 BESK1(X) computes the modified (hyperbolic) Bessel function of third
 kind of order one for real argument X, where X .GT. 0.

 Series for BK1 on the interval 0. to 4.00000D+00
 with weighted error 7.02E-18
 log weighted error 17.15
 significant figures required 16.73
 decimal places required 17.67

 ***REFERENCES (NONE)
 ***ROUTINES CALLED BESI1, BESK1E, CSEVL, INITS, R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770401 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 51

BESK1E

 FUNCTION BESK1E (X)
 ***BEGIN PROLOGUE BESK1E
 ***PURPOSE Compute the exponentially scaled modified (hyperbolic)
 Bessel function of the third kind of order one.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C10B1
 ***TYPE SINGLE PRECISION (BESK1E-S, DBSK1E-D)
 ***KEYWORDS EXPONENTIALLY SCALED, FNLIB, HYPERBOLIC BESSEL FUNCTION,
 MODIFIED BESSEL FUNCTION, ORDER ONE, SPECIAL FUNCTIONS,
 THIRD KIND
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 BESK1E(X) computes the exponentially scaled modified (hyperbolic)
 Bessel function of third kind of order one for real argument
 X .GT. 0.0, i.e., EXP(X)*K1(X).

 Series for BK1 on the interval 0. to 4.00000D+00
 with weighted error 7.02E-18
 log weighted error 17.15
 significant figures required 16.73
 decimal places required 17.67

 Series for AK1 on the interval 1.25000D-01 to 5.00000D-01
 with weighted error 6.06E-17
 log weighted error 16.22
 significant figures required 15.41
 decimal places required 16.83

 Series for AK12 on the interval 0. to 1.25000D-01
 with weighted error 2.58E-17
 log weighted error 16.59
 significant figures required 15.22
 decimal places required 17.16

 ***REFERENCES (NONE)
 ***ROUTINES CALLED BESI1, CSEVL, INITS, R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770401 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 52

BESKES

 SUBROUTINE BESKES (XNU, X, NIN, BKE)
 ***BEGIN PROLOGUE BESKES
 ***PURPOSE Compute a sequence of exponentially scaled modified Bessel
 functions of the third kind of fractional order.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C10B3
 ***TYPE SINGLE PRECISION (BESKES-S, DBSKES-D)
 ***KEYWORDS EXPONENTIALLY SCALED, FNLIB, FRACTIONAL ORDER,
 MODIFIED BESSEL FUNCTION, SEQUENCE OF BESSEL FUNCTIONS,
 SPECIAL FUNCTIONS, THIRD KIND
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 BESKES computes a sequence of exponentially scaled
 (i.e., multipled by EXP(X)) modified Bessel
 functions of the third kind of order XNU + I at X, where X .GT. 0,
 XNU lies in (-1,1), and I = 0, 1, ... , NIN - 1, if NIN is positive
 and I = 0, -1, ... , NIN + 1, if NIN is negative. On return, the
 vector BKE(.) contains the results at X for order starting at XNU.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED R1MACH, R9KNUS, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890911 Removed unnecessary intrinsics. (WRB)
 890911 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 53

BESKNU

 SUBROUTINE BESKNU (X, FNU, KODE, N, Y, NZ)
 ***BEGIN PROLOGUE BESKNU
 ***SUBSIDIARY
 ***PURPOSE Subsidiary to BESK
 ***LIBRARY SLATEC
 ***TYPE SINGLE PRECISION (BESKNU-S, DBSKNU-D)
 ***AUTHOR Amos, D. E., (SNLA)
 ***DESCRIPTION

 Abstract
 BESKNU computes N member sequences of K Bessel functions
 K/SUB(FNU+I-1)/(X), I=1,N for non-negative orders FNU and
 positive X. Equations of the references are implemented on
 small orders DNU for K/SUB(DNU)/(X) and K/SUB(DNU+1)/(X).
 Forward recursion with the three term recursion relation
 generates higher orders FNU+I-1, I=1,...,N. The parameter
 KODE permits K/SUB(FNU+I-1)/(X) values or scaled values
 EXP(X)*K/SUB(FNU+I-1)/(X), I=1,N to be returned.

 To start the recursion FNU is normalized to the interval
 -0.5.LE.DNU.LT.0.5. A special form of the power series is
 implemented on 0.LT.X.LE.X1 while the Miller algorithm for the
 K Bessel function in terms of the confluent hypergeometric
 function U(FNU+0.5,2*FNU+1,X) is implemented on X1.LT.X.LE.X2.
 For X.GT.X2, the asymptotic expansion for large X is used.
 When FNU is a half odd integer, a special formula for
 DNU=-0.5 and DNU+1.0=0.5 is used to start the recursion.

 BESKNU assumes that a significant digit SINH(X) function is
 available.

 Description of Arguments

 Input
 X - X.GT.0.0E0
 FNU - Order of initial K function, FNU.GE.0.0E0
 N - Number of members of the sequence, N.GE.1
 KODE - A parameter to indicate the scaling option
 KODE= 1 returns
 Y(I)= K/SUB(FNU+I-1)/(X)
 I=1,...,N
 = 2 returns
 Y(I)=EXP(X)*K/SUB(FNU+I-1)/(X)
 I=1,...,N

 Output
 Y - A vector whose first N components contain values
 for the sequence
 Y(I)= K/SUB(FNU+I-1)/(X), I=1,...,N or
 Y(I)=EXP(X)*K/SUB(FNU+I-1)/(X), I=1,...,N
 depending on KODE
 NZ - Number of components set to zero due to
 underflow,
 NZ= 0 , Normal return
 NZ.NE.0 , First NZ components of Y set to zero
 due to underflow, Y(I)=0.0E0,I=1,...,NZ

SLATEC2 (AAAAAA through D9UPAK) - 54

 Error Conditions
 Improper input arguments - a fatal error
 Overflow - a fatal error
 Underflow with KODE=1 - a non-fatal error (NZ.NE.0)

 ***SEE ALSO BESK
 ***REFERENCES N. M. Temme, On the numerical evaluation of the modified
 Bessel function of the third kind, Journal of
 Computational Physics 19, (1975), pp. 324-337.
 ***ROUTINES CALLED GAMMA, I1MACH, R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 790201 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 900328 Added TYPE section. (WRB)
 900727 Added EXTERNAL statement. (WRB)
 910408 Updated the AUTHOR and REFERENCES sections. (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 55

BESKS

 SUBROUTINE BESKS (XNU, X, NIN, BK)
 ***BEGIN PROLOGUE BESKS
 ***PURPOSE Compute a sequence of modified Bessel functions of the
 third kind of fractional order.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C10B3
 ***TYPE SINGLE PRECISION (BESKS-S, DBESKS-D)
 ***KEYWORDS FNLIB, FRACTIONAL ORDER, MODIFIED BESSEL FUNCTION,
 SEQUENCE OF BESSEL FUNCTIONS, SPECIAL FUNCTIONS,
 THIRD KIND
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 BESKS computes a sequence of modified Bessel functions of the third
 kind of order XNU + I at X, where X .GT. 0, XNU lies in (-1,1),
 and I = 0, 1, ... , NIN - 1, if NIN is positive and I = 0, 1, ... ,
 NIN + 1, if NIN is negative. On return, the vector BK(.) Contains
 the results at X for order starting at XNU.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED BESKES, R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 56

BESY

 SUBROUTINE BESY (X, FNU, N, Y)
 ***BEGIN PROLOGUE BESY
 ***PURPOSE Implement forward recursion on the three term recursion
 relation for a sequence of non-negative order Bessel
 functions Y/SUB(FNU+I-1)/(X), I=1,...,N for real, positive
 X and non-negative orders FNU.
 ***LIBRARY SLATEC
 ***CATEGORY C10A3
 ***TYPE SINGLE PRECISION (BESY-S, DBESY-D)
 ***KEYWORDS SPECIAL FUNCTIONS, Y BESSEL FUNCTION
 ***AUTHOR Amos, D. E., (SNLA)
 ***DESCRIPTION

 Abstract
 BESY implements forward recursion on the three term
 recursion relation for a sequence of non-negative order Bessel
 functions Y/sub(FNU+I-1)/(X), I=1,N for real X .GT. 0.0E0 and
 non-negative orders FNU. If FNU .LT. NULIM, orders FNU and
 FNU+1 are obtained from BESYNU which computes by a power
 series for X .LE. 2, the K Bessel function of an imaginary
 argument for 2 .LT. X .LE. 20 and the asymptotic expansion for
 X .GT. 20.

 If FNU .GE. NULIM, the uniform asymptotic expansion is coded
 in ASYJY for orders FNU and FNU+1 to start the recursion.
 NULIM is 70 or 100 depending on whether N=1 or N .GE. 2. An
 overflow test is made on the leading term of the asymptotic
 expansion before any extensive computation is done.

 Description of Arguments

 Input
 X - X .GT. 0.0E0
 FNU - order of the initial Y function, FNU .GE. 0.0E0
 N - number of members in the sequence, N .GE. 1

 Output
 Y - a vector whose first N components contain values
 for the sequence Y(I)=Y/sub(FNU+I-1)/(X), I=1,N.

 Error Conditions
 Improper input arguments - a fatal error
 Overflow - a fatal error

 ***REFERENCES F. W. J. Olver, Tables of Bessel Functions of Moderate
 or Large Orders, NPL Mathematical Tables 6, Her
 Majesty's Stationery Office, London, 1962.
 N. M. Temme, On the numerical evaluation of the modified
 Bessel function of the third kind, Journal of
 Computational Physics 19, (1975), pp. 324-337.
 N. M. Temme, On the numerical evaluation of the ordinary
 Bessel function of the second kind, Journal of
 Computational Physics 21, (1976), pp. 343-350.
 ***ROUTINES CALLED ASYJY, BESY0, BESY1, BESYNU, I1MACH, R1MACH,
 XERMSG, YAIRY
 ***REVISION HISTORY (YYMMDD)

SLATEC2 (AAAAAA through D9UPAK) - 57

 800501 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 58

BESY0

 FUNCTION BESY0 (X)
 ***BEGIN PROLOGUE BESY0
 ***PURPOSE Compute the Bessel function of the second kind of order
 zero.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C10A1
 ***TYPE SINGLE PRECISION (BESY0-S, DBESY0-D)
 ***KEYWORDS BESSEL FUNCTION, FNLIB, ORDER ZERO, SECOND KIND,
 SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 BESY0(X) calculates the Bessel function of the second kind
 of order zero for real argument X.

 Series for BY0 on the interval 0. to 1.60000D+01
 with weighted error 1.20E-17
 log weighted error 16.92
 significant figures required 16.15
 decimal places required 17.48

 Series for BM0 on the interval 0. to 6.25000D-02
 with weighted error 4.98E-17
 log weighted error 16.30
 significant figures required 14.97
 decimal places required 16.96

 Series for BTH0 on the interval 0. to 6.25000D-02
 with weighted error 3.67E-17
 log weighted error 16.44
 significant figures required 15.53
 decimal places required 17.13

 ***REFERENCES (NONE)
 ***ROUTINES CALLED BESJ0, CSEVL, INITS, R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770401 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 59

BESY1

 FUNCTION BESY1 (X)
 ***BEGIN PROLOGUE BESY1
 ***PURPOSE Compute the Bessel function of the second kind of order
 one.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C10A1
 ***TYPE SINGLE PRECISION (BESY1-S, DBESY1-D)
 ***KEYWORDS BESSEL FUNCTION, FNLIB, ORDER ONE, SECOND KIND,
 SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 BESY1(X) calculates the Bessel function of the second kind of
 order one for real argument X.

 Series for BY1 on the interval 0. to 1.60000D+01
 with weighted error 1.87E-18
 log weighted error 17.73
 significant figures required 17.83
 decimal places required 18.30

 Series for BM1 on the interval 0. to 6.25000D-02
 with weighted error 5.61E-17
 log weighted error 16.25
 significant figures required 14.97
 decimal places required 16.91

 Series for BTH1 on the interval 0. to 6.25000D-02
 with weighted error 4.10E-17
 log weighted error 16.39
 significant figures required 15.96
 decimal places required 17.08

 ***REFERENCES (NONE)
 ***ROUTINES CALLED BESJ1, CSEVL, INITS, R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770401 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 60

BETA

 FUNCTION BETA (A, B)
 ***BEGIN PROLOGUE BETA
 ***PURPOSE Compute the complete Beta function.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C7B
 ***TYPE SINGLE PRECISION (BETA-S, DBETA-D, CBETA-C)
 ***KEYWORDS COMPLETE BETA FUNCTION, FNLIB, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 BETA computes the complete beta function.

 Input Parameters:
 A real and positive
 B real and positive

 ***REFERENCES (NONE)
 ***ROUTINES CALLED ALBETA, GAMLIM, GAMMA, R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 900727 Added EXTERNAL statement. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 61

BETAI

 REAL FUNCTION BETAI (X, PIN, QIN)
 ***BEGIN PROLOGUE BETAI
 ***PURPOSE Calculate the incomplete Beta function.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C7F
 ***TYPE SINGLE PRECISION (BETAI-S, DBETAI-D)
 ***KEYWORDS FNLIB, INCOMPLETE BETA FUNCTION, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 BETAI calculates the REAL incomplete beta function.

 The incomplete beta function ratio is the probability that a
 random variable from a beta distribution having parameters PIN and
 QIN will be less than or equal to X.

 -- Input Arguments -- All arguments are REAL.
 X upper limit of integration. X must be in (0,1) inclusive.
 PIN first beta distribution parameter. PIN must be .GT. 0.0.
 QIN second beta distribution parameter. QIN must be .GT. 0.0.

 ***REFERENCES Nancy E. Bosten and E. L. Battiste, Remark on Algorithm
 179, Communications of the ACM 17, 3 (March 1974),
 pp. 156.
 ***ROUTINES CALLED ALBETA, R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770401 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920528 DESCRIPTION and REFERENCES sections revised. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 62

BFQAD

 SUBROUTINE BFQAD (F, T, BCOEF, N, K, ID, X1, X2, TOL, QUAD, IERR,
 + WORK)
 ***BEGIN PROLOGUE BFQAD
 ***PURPOSE Compute the integral of a product of a function and a
 derivative of a B-spline.
 ***LIBRARY SLATEC
 ***CATEGORY H2A2A1, E3, K6
 ***TYPE SINGLE PRECISION (BFQAD-S, DBFQAD-D)
 ***KEYWORDS INTEGRAL OF B-SPLINE, QUADRATURE
 ***AUTHOR Amos, D. E., (SNLA)
 ***DESCRIPTION

 Abstract
 BFQAD computes the integral on (X1,X2) of a product of a
 function F and the ID-th derivative of a K-th order B-spline,
 using the B-representation (T,BCOEF,N,K). (X1,X2) must be
 a subinterval of T(K) .LE. X .le. T(N+1). An integration
 routine BSGQ8 (a modification
 of GAUS8), integrates the product on sub-
 intervals of (X1,X2) formed by included (distinct) knots.

 Description of Arguments
 Input
 F - external function of one argument for the
 integrand BF(X)=F(X)*BVALU(T,BCOEF,N,K,ID,X,INBV,
 WORK)
 T - knot array of length N+K
 BCOEF - coefficient array of length N
 N - length of coefficient array
 K - order of B-spline, K .GE. 1
 ID - order of the spline derivative, 0 .LE. ID .LE. K-1
 ID=0 gives the spline function
 X1,X2 - end points of quadrature interval in
 T(K) .LE. X .LE. T(N+1)
 TOL - desired accuracy for the quadrature, suggest
 10.*STOL .LT. TOL .LE. 0.1 where STOL is the single
 precision unit roundoff for the machine = R1MACH(4)

 Output
 QUAD - integral of BF(X) on (X1,X2)
 IERR - a status code
 IERR=1 normal return
 2 some quadrature on (X1,X2) does not meet
 the requested tolerance.
 WORK - work vector of length 3*K

 Error Conditions
 X1 or X2 not in T(K) .LE. X .LE. T(N+1) is a fatal error.
 TOL not greater than the single precision unit roundoff or
 less than 0.1 is a fatal error.
 Some quadrature fails to meet the requested tolerance.

 ***REFERENCES D. E. Amos, Quadrature subroutines for splines and
 B-splines, Report SAND79-1825, Sandia Laboratories,
 December 1979.
 ***ROUTINES CALLED BSGQ8, INTRV, R1MACH, XERMSG

SLATEC2 (AAAAAA through D9UPAK) - 63

 ***REVISION HISTORY (YYMMDD)
 800901 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 64

BI

 FUNCTION BI (X)
 ***BEGIN PROLOGUE BI
 ***PURPOSE Evaluate the Bairy function (the Airy function of the
 second kind).
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C10D
 ***TYPE SINGLE PRECISION (BI-S, DBI-D)
 ***KEYWORDS BAIRY FUNCTION, FNLIB, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 BI(X) calculates the Airy function of the second kind for real
 argument X.

 Series for BIF on the interval -1.00000D+00 to 1.00000D+00
 with weighted error 1.88E-19
 log weighted error 18.72
 significant figures required 17.74
 decimal places required 19.20

 Series for BIG on the interval -1.00000D+00 to 1.00000D+00
 with weighted error 2.61E-17
 log weighted error 16.58
 significant figures required 15.17
 decimal places required 17.03

 Series for BIF2 on the interval 1.00000D+00 to 8.00000D+00
 with weighted error 1.11E-17
 log weighted error 16.95
 approx significant figures required 16.5
 decimal places required 17.45

 Series for BIG2 on the interval 1.00000D+00 to 8.00000D+00
 with weighted error 1.19E-18
 log weighted error 17.92
 approx significant figures required 17.2
 decimal places required 18.42

 ***REFERENCES (NONE)
 ***ROUTINES CALLED BIE, CSEVL, INITS, R1MACH, R9AIMP, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 65

BIE

 FUNCTION BIE (X)
 ***BEGIN PROLOGUE BIE
 ***PURPOSE Calculate the Bairy function for a negative argument and an
 exponentially scaled Bairy function for a non-negative
 argument.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C10D
 ***TYPE SINGLE PRECISION (BIE-S, DBIE-D)
 ***KEYWORDS BAIRY FUNCTION, EXPONENTIALLY SCALED, FNLIB,
 SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 Evaluate BI(X) for X .LE. 0 and BI(X)*EXP(ZETA) where
 ZETA = 2/3 * X**(3/2) for X .GE. 0.0

 Series for BIF on the interval -1.00000D+00 to 1.00000D+00
 with weighted error 1.88E-19
 log weighted error 18.72
 significant figures required 17.74
 decimal places required 19.20

 Series for BIG on the interval -1.00000D+00 to 1.00000D+00
 with weighted error 2.61E-17
 log weighted error 16.58
 significant figures required 15.17
 decimal places required 17.03

 Series for BIF2 on the interval 1.00000D+00 to 8.00000D+00
 with weighted error 1.11E-17
 log weighted error 16.95
 approx significant figures required 16.5
 decimal places required 17.45

 Series for BIG2 on the interval 1.00000D+00 to 8.00000D+00
 with weighted error 1.19E-18
 log weighted error 17.92
 approx significant figures required 17.2
 decimal places required 18.42

 Series for BIP on the interval 1.25000D-01 to 3.53553D-01
 with weighted error 1.91E-17
 log weighted error 16.72
 significant figures required 15.35
 decimal places required 17.41

 Series for BIP2 on the interval 0. to 1.25000D-01
 with weighted error 1.05E-18
 log weighted error 17.98
 significant figures required 16.74
 decimal places required 18.71

 ***REFERENCES (NONE)
 ***ROUTINES CALLED CSEVL, INITS, R1MACH, R9AIMP
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN

SLATEC2 (AAAAAA through D9UPAK) - 66

 890206 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 67

BINOM

 FUNCTION BINOM (N, M)
 ***BEGIN PROLOGUE BINOM
 ***PURPOSE Compute the binomial coefficients.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C1
 ***TYPE SINGLE PRECISION (BINOM-S, DBINOM-D)
 ***KEYWORDS BINOMIAL COEFFICIENTS, FNLIB, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 BINOM(N,M) calculates the binomial coefficient (N!)/((M!)*(N-M)!).

 ***REFERENCES (NONE)
 ***ROUTINES CALLED ALNREL, R1MACH, R9LGMC, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 68

BINT4

 SUBROUTINE BINT4 (X, Y, NDATA, IBCL, IBCR, FBCL, FBCR, KNTOPT, T,
 + BCOEF, N, K, W)
 ***BEGIN PROLOGUE BINT4
 ***PURPOSE Compute the B-representation of a cubic spline
 which interpolates given data.
 ***LIBRARY SLATEC
 ***CATEGORY E1A
 ***TYPE SINGLE PRECISION (BINT4-S, DBINT4-D)
 ***KEYWORDS B-SPLINE, CUBIC SPLINES, DATA FITTING, INTERPOLATION
 ***AUTHOR Amos, D. E., (SNLA)
 ***DESCRIPTION

 Abstract
 BINT4 computes the B representation (T,BCOEF,N,K) of a
 cubic spline (K=4) which interpolates data (X(I)),Y(I))),
 I=1,NDATA. Parameters IBCL, IBCR, FBCL, FBCR allow the
 specification of the spline first or second derivative at
 both X(1) and X(NDATA). When this data is not specified
 by the problem, it is common practice to use a natural
 spline by setting second derivatives at X(1) and X(NDATA)
 to zero (IBCL=IBCR=2,FBCL=FBCR=0.0). The spline is defined on
 T(4) .LE. X .LE. T(N+1) with (ordered) interior knots at X(I))
 values where N=NDATA+2. The knots T(1), T(2), T(3) lie to
 the left of T(4)=X(1) and the knots T(N+2), T(N+3), T(N+4)
 lie to the right of T(N+1)=X(NDATA) in increasing order. If
 no extrapolation outside (X(1),X(NDATA)) is anticipated, the
 knots T(1)=T(2)=T(3)=T(4)=X(1) and T(N+2)=T(N+3)=T(N+4)=
 T(N+1)=X(NDATA) can be specified by KNTOPT=1. KNTOPT=2
 selects a knot placement for T(1), T(2), T(3) to make the
 first 7 knots symmetric about T(4)=X(1) and similarly for
 T(N+2), T(N+3), T(N+4) about T(N+1)=X(NDATA). KNTOPT=3
 allows the user to make his own selection, in increasing
 order, for T(1), T(2), T(3) to the left of X(1) and T(N+2),
 T(N+3), T(N+4) to the right of X(NDATA) in the work array
 W(1) through W(6). In any case, the interpolation on
 T(4) .LE. X .LE. T(N+1) by using function BVALU is unique
 for given boundary conditions.

 Description of Arguments
 Input
 X - X vector of abscissae of length NDATA, distinct
 and in increasing order
 Y - Y vector of ordinates of length NDATA
 NDATA - number of data points, NDATA .GE. 2
 IBCL - selection parameter for left boundary condition
 IBCL = 1 constrain the first derivative at
 X(1) to FBCL
 = 2 constrain the second derivative at
 X(1) to FBCL
 IBCR - selection parameter for right boundary condition
 IBCR = 1 constrain first derivative at
 X(NDATA) to FBCR
 IBCR = 2 constrain second derivative at
 X(NDATA) to FBCR
 FBCL - left boundary values governed by IBCL
 FBCR - right boundary values governed by IBCR

SLATEC2 (AAAAAA through D9UPAK) - 69

 KNTOPT - knot selection parameter
 KNTOPT = 1 sets knot multiplicity at T(4) and
 T(N+1) to 4
 = 2 sets a symmetric placement of knots
 about T(4) and T(N+1)
 = 3 sets TNP)=WNP) and T(N+1+I)=w(3+I),I=1,3
 where WNP),I=1,6 is supplied by the user
 W - work array of dimension at least 5*(NDATA+2)
 if KNTOPT=3, then W(1),W(2),W(3) are knot values to
 the left of X(1) and W(4),W(5),W(6) are knot
 values to the right of X(NDATA) in increasing
 order to be supplied by the user

 Output
 T - knot array of length N+4
 BCOEF - B-spline coefficient array of length N
 N - number of coefficients, N=NDATA+2
 K - order of spline, K=4

 Error Conditions
 Improper input is a fatal error
 Singular system of equations is a fatal error

 ***REFERENCES D. E. Amos, Computation with splines and B-splines,
 Report SAND78-1968, Sandia Laboratories, March 1979.
 Carl de Boor, Package for calculating with B-splines,
 SIAM Journal on Numerical Analysis 14, 3 (June 1977),
 pp. 441-472.
 Carl de Boor, A Practical Guide to Splines, Applied
 Mathematics Series 27, Springer-Verlag, New York,
 1978.
 ***ROUTINES CALLED BNFAC, BNSLV, BSPVD, R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800901 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 70

BINTK

 SUBROUTINE BINTK (X, Y, T, N, K, BCOEF, Q, WORK)
 ***BEGIN PROLOGUE BINTK
 ***PURPOSE Compute the B-representation of a spline which interpolates
 given data.
 ***LIBRARY SLATEC
 ***CATEGORY E1A
 ***TYPE SINGLE PRECISION (BINTK-S, DBINTK-D)
 ***KEYWORDS B-SPLINE, DATA FITTING, INTERPOLATION
 ***AUTHOR Amos, D. E., (SNLA)
 ***DESCRIPTION

 Written by Carl de Boor and modified by D. E. Amos

 Abstract

 BINTK is the SPLINT routine of the reference.

 BINTK produces the B-spline coefficients, BCOEF, of the
 B-spline of order K with knots T(I), I=1,...,N+K, which
 takes on the value Y(I) at X(I), I=1,...,N. The spline or
 any of its derivatives can be evaluated by calls to BVALU.
 The I-th equation of the linear system A*BCOEF = B for the
 coefficients of the interpolant enforces interpolation at
 X(I)), I=1,...,N. Hence, B(I) = Y(I), all I, and A is
 a band matrix with 2K-1 bands if A is invertible. The matrix
 A is generated row by row and stored, diagonal by diagonal,
 in the rows of Q, with the main diagonal going into row K.
 The banded system is then solved by a call to BNFAC (which
 constructs the triangular factorization for A and stores it
 again in Q), followed by a call to BNSLV (which then
 obtains the solution BCOEF by substitution). BNFAC does no
 pivoting, since the total positivity of the matrix A makes
 this unnecessary. The linear system to be solved is
 (theoretically) invertible if and only if
 T(I) .LT. X(I)) .LT. T(I+K), all I.
 Equality is permitted on the left for I=1 and on the right
 for I=N when K knots are used at X(1) or X(N). Otherwise,
 violation of this condition is certain to lead to an error.

 Description of Arguments
 Input
 X - vector of length N containing data point abscissa
 in strictly increasing order.
 Y - corresponding vector of length N containing data
 point ordinates.
 T - knot vector of length N+K
 since T(1),..,T(K) .LE. X(1) and T(N+1),..,T(N+K)
 .GE. X(N), this leaves only N-K knots (not nec-
 essarily X(I)) values) interior to (X(1),X(N))
 N - number of data points, N .GE. K
 K - order of the spline, K .GE. 1

 Output
 BCOEF - a vector of length N containing the B-spline
 coefficients
 Q - a work vector of length (2*K-1)*N, containing

SLATEC2 (AAAAAA through D9UPAK) - 71

 the triangular factorization of the coefficient
 matrix of the linear system being solved. The
 coefficients for the interpolant of an
 additional data set (X(I)),YY(I)), I=1,...,N
 with the same abscissa can be obtained by loading
 YY into BCOEF and then executing
 CALL BNSLV (Q,2K-1,N,K-1,K-1,BCOEF)
 WORK - work vector of length 2*K

 Error Conditions
 Improper input is a fatal error
 Singular system of equations is a fatal error

 ***REFERENCES D. E. Amos, Computation with splines and B-splines,
 Report SAND78-1968, Sandia Laboratories, March 1979.
 Carl de Boor, Package for calculating with B-splines,
 SIAM Journal on Numerical Analysis 14, 3 (June 1977),
 pp. 441-472.
 Carl de Boor, A Practical Guide to Splines, Applied
 Mathematics Series 27, Springer-Verlag, New York,
 1978.
 ***ROUTINES CALLED BNFAC, BNSLV, BSPVN, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800901 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 72

BISECT

 SUBROUTINE BISECT (N, EPS1, D, E, E2, LB, UB, MM, M, W, IND, IERR,
 + RV4, RV5)
 ***BEGIN PROLOGUE BISECT
 ***PURPOSE Compute the eigenvalues of a symmetric tridiagonal matrix
 in a given interval using Sturm sequencing.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4A5, D4C2A
 ***TYPE SINGLE PRECISION (BISECT-S)
 ***KEYWORDS EIGENVALUES, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of the bisection technique
 in the ALGOL procedure TRISTURM by Peters and Wilkinson.
 HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 418-439(1971).

 This subroutine finds those eigenvalues of a TRIDIAGONAL
 SYMMETRIC matrix which lie in a specified interval,
 using bisection.

 On INPUT

 N is the order of the matrix. N is an INTEGER variable.

 EPS1 is an absolute error tolerance for the computed
 eigenvalues. If the input EPS1 is non-positive,
 it is reset for each submatrix to a default value,
 namely, minus the product of the relative machine
 precision and the 1-norm of the submatrix.
 EPS1 is a REAL variable.

 D contains the diagonal elements of the input matrix.
 D is a one-dimensional REAL array, dimensioned D(N).

 E contains the subdiagonal elements of the input matrix
 in its last N-1 positions. E(1) is arbitrary.
 E is a one-dimensional REAL array, dimensioned E(N).

 E2 contains the squares of the corresponding elements of E.
 E2(1) is arbitrary. E2 is a one-dimensional REAL array,
 dimensioned E2(N).

 LB and UB define the interval to be searched for eigenvalues.
 If LB is not less than UB, no eigenvalues will be found.
 LB and UB are REAL variables.

 MM should be set to an upper bound for the number of
 eigenvalues in the interval. WARNING - If more than
 MM eigenvalues are determined to lie in the interval,
 an error return is made with no eigenvalues found.
 MM is an INTEGER variable.

 On OUTPUT

 EPS1 is unaltered unless it has been reset to its
 (last) default value.

SLATEC2 (AAAAAA through D9UPAK) - 73

 D and E are unaltered.

 Elements of E2, corresponding to elements of E regarded
 as negligible, have been replaced by zero causing the
 matrix to split into a direct sum of submatrices.
 E2(1) is also set to zero.

 M is the number of eigenvalues determined to lie in (LB,UB).
 M is an INTEGER variable.

 W contains the M eigenvalues in ascending order.
 W is a one-dimensional REAL array, dimensioned W(MM).

 IND contains in its first M positions the submatrix indices
 associated with the corresponding eigenvalues in W --
 1 for eigenvalues belonging to the first submatrix from
 the top, 2 for those belonging to the second submatrix, etc.
 IND is an one-dimensional INTEGER array, dimensioned IND(MM).

 IERR is an INTEGER flag set to
 Zero for normal return,
 3*N+1 if M exceeds MM. In this case, M contains the
 number of eigenvalues determined to lie in
 (LB,UB).

 RV4 and RV5 are one-dimensional REAL arrays used for temporary
 storage, dimensioned RV4(N) and RV5(N).

 The ALGOL procedure STURMCNT contained in TRISTURM
 appears in BISECT in-line.

 Note that subroutine TQL1 or IMTQL1 is generally faster than
 BISECT, if more than N/4 eigenvalues are to be found.

 Questions and comments should be directed to B. S. Garbow,
 Applied Mathematics Division, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED R1MACH
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 74

BLKTRI

 SUBROUTINE BLKTRI (IFLG, NP, N, AN, BN, CN, MP, M, AM, BM, CM,
 + IDIMY, Y, IERROR, W)
 ***BEGIN PROLOGUE BLKTRI
 ***PURPOSE Solve a block tridiagonal system of linear equations
 (usually resulting from the discretization of separable
 two-dimensional elliptic equations).
 ***LIBRARY SLATEC (FISHPACK)
 ***CATEGORY I2B4B
 ***TYPE SINGLE PRECISION (BLKTRI-S, CBLKTR-C)
 ***KEYWORDS ELLIPTIC PDE, FISHPACK, TRIDIAGONAL LINEAR SYSTEM
 ***AUTHOR Adams, J., (NCAR)
 Swarztrauber, P. N., (NCAR)
 Sweet, R., (NCAR)
 ***DESCRIPTION

 Subroutine BLKTRI Solves a System of Linear Equations of the Form

 AN(J)*X(I,J-1) + AM(I)*X(I-1,J) + (BN(J)+BM(I))*X(I,J)

 + CN(J)*X(I,J+1) + CM(I)*X(I+1,J) = Y(I,J)

 for I = 1,2,...,M and J = 1,2,...,N.

 I+1 and I-1 are evaluated modulo M and J+1 and J-1 modulo N, i.e.,

 X(I,0) = X(I,N), X(I,N+1) = X(I,1),
 X(0,J) = X(M,J), X(M+1,J) = X(1,J).

 These equations usually result from the discretization of
 separable elliptic equations. Boundary conditions may be
 Dirichlet, Neumann, or Periodic.

 * * * * * * * * * * ON INPUT * * * * * * * * * *

 IFLG
 = 0 Initialization only. Certain quantities that depend on NP,
 N, AN, BN, and CN are computed and stored in the work
 array W.
 = 1 The quantities that were computed in the initialization are
 used to obtain the solution X(I,J).

 NOTE A call with IFLG=0 takes approximately one half the time
 as a call with IFLG = 1 . However, the
 initialization does not have to be repeated unless NP, N,
 AN, BN, or CN change.

 NP
 = 0 If AN(1) and CN(N) are not zero, which corresponds to
 periodic boundary conditions.
 = 1 If AN(1) and CN(N) are zero.

 N
 The number of unknowns in the J-direction. N must be greater
 than 4. The operation count is proportional to MNlog2(N), hence
 N should be selected less than or equal to M.

SLATEC2 (AAAAAA through D9UPAK) - 75

 AN,BN,CN
 One-dimensional arrays of length N that specify the coefficients
 in the linear equations given above.

 MP
 = 0 If AM(1) and CM(M) are not zero, which corresponds to
 periodic boundary conditions.
 = 1 If AM(1) = CM(M) = 0 .

 M
 The number of unknowns in the I-direction. M must be greater
 than 4.

 AM,BM,CM
 One-dimensional arrays of length M that specify the coefficients
 in the linear equations given above.

 IDIMY
 The row (or first) dimension of the two-dimensional array Y as
 it appears in the program calling BLKTRI. This parameter is
 used to specify the variable dimension of Y. IDIMY must be at
 least M.

 Y
 A two-dimensional array that specifies the values of the right
 side of the linear system of equations given above. Y must be
 dimensioned at least M*N.

 W
 A one-dimensional array that must be provided by the user for
 work space.
 If NP=1 define K=INT(log2(N))+1 and set L=2**(K+1) then
 W must have dimension (K-2)*L+K+5+MAX(2N,6M)

 If NP=0 define K=INT(log2(N-1))+1 and set L=2**(K+1) then
 W must have dimension (K-2)*L+K+5+2N+MAX(2N,6M)

 IMPORTANT For purposes of checking, the required dimension
 of W is computed by BLKTRI and stored in W(1)
 in floating point format.

 * * * * * * * * * * On Output * * * * * * * * * *

 Y
 Contains the solution X.

 IERROR
 An error flag that indicates invalid input parameters. Except
 for number zero, a solution is not attempted.

 = 0 No error.
 = 1 M is less than 5.
 = 2 N is less than 5.
 = 3 IDIMY is less than M.
 = 4 BLKTRI failed while computing results that depend on the
 coefficient arrays AN, BN, CN. Check these arrays.
 = 5 AN(J)*CN(J-1) is less than 0 for some J. Possible reasons
 for this condition are
 1. The arrays AN and CN are not correct.

SLATEC2 (AAAAAA through D9UPAK) - 76

 2. Too large a grid spacing was used in the discretization
 of the elliptic equation.
 3. The linear equations resulted from a partial
 differential equation which was not elliptic.

 W
 Contains intermediate values that must not be destroyed if
 BLKTRI will be called again with IFLG=1. W(1) contains the
 number of locations required by W in floating point format.

 *Long Description:

 * * * * * * * Program Specifications * * * * * * * * * * * *

 Dimension of AN(N),BN(N),CN(N),AM(M),BM(M),CM(M),Y(IDIMY,N)
 Arguments W(See argument list)

 Latest June 1979
 Revision

 Required BLKTRI,BLKTRI,PROD,PRODP,CPROD,CPRODP,COMPB,INDXA,
 Subprograms INDXB,INDXC,PPADD,PSGF,PPSGF,PPSPF,BSRH,TEVLS,
 R1MACH

 Special The Algorithm may fail if ABS(BM(I)+BN(J)) is less
 Conditions than ABS(AM(I))+ABS(AN(J))+ABS(CM(I))+ABS(CN(J))
 for some I and J. The Algorithm will also fail if
 AN(J)*CN(J-1) is less than zero for some J.
 See the description of the output parameter IERROR.

 Common CBLKT
 Blocks

 I/O None

 Precision Single

 Specialist Paul Swarztrauber

 Language FORTRAN

 History Version 1 September 1973
 Version 2 April 1976
 Version 3 June 1979

 Algorithm Generalized Cyclic Reduction (See Reference below)

 Space
 Required Control Data 7600

 Portability American National Standards Institute Fortran.
 The machine accuracy is set using function R1MACH.

 Required None
 Resident
 Routines

 References Swarztrauber,P. and R. Sweet, 'Efficient FORTRAN
 Subprograms For The Solution Of Elliptic Equations'
 NCAR TN/IA-109, July, 1975, 138 PP.

SLATEC2 (AAAAAA through D9UPAK) - 77

 Swarztrauber P. ,'A Direct Method For The Discrete
 Solution Of Separable Elliptic Equations', S.I.A.M.
 J. Numer. Anal.,11(1974) PP. 1136-1150.

 ***REFERENCES P. N. Swarztrauber and R. Sweet, Efficient Fortran
 subprograms for the solution of elliptic equations,
 NCAR TN/IA-109, July 1975, 138 pp.
 P. N. Swarztrauber, A direct method for the discrete
 solution of separable elliptic equations, SIAM Journal
 on Numerical Analysis 11, (1974), pp. 1136-1150.
 ***ROUTINES CALLED BLKTR1, COMPB, CPROD, CPRODP, PROD, PRODP
 ***COMMON BLOCKS CBLKT
 ***REVISION HISTORY (YYMMDD)
 801001 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 78

BNDACC

 SUBROUTINE BNDACC (G, MDG, NB, IP, IR, MT, JT)
 ***BEGIN PROLOGUE BNDACC
 ***PURPOSE Compute the LU factorization of a banded matrices using
 sequential accumulation of rows of the data matrix.
 Exactly one right-hand side vector is permitted.
 ***LIBRARY SLATEC
 ***CATEGORY D9
 ***TYPE SINGLE PRECISION (BNDACC-S, DBNDAC-D)
 ***KEYWORDS BANDED MATRIX, CURVE FITTING, LEAST SQUARES
 ***AUTHOR Lawson, C. L., (JPL)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 These subroutines solve the least squares problem Ax = b for
 banded matrices A using sequential accumulation of rows of the
 data matrix. Exactly one right-hand side vector is permitted.

 These subroutines are intended for the type of least squares
 systems that arise in applications such as curve or surface
 fitting of data. The least squares equations are accumulated and
 processed using only part of the data. This requires a certain
 user interaction during the solution of Ax = b.

 Specifically, suppose the data matrix (A B) is row partitioned
 into Q submatrices. Let (E F) be the T-th one of these
 submatrices where E = (0 C 0). Here the dimension of E is MT by N
 and the dimension of C is MT by NB. The value of NB is the
 bandwidth of A. The dimensions of the leading block of zeros in E
 are MT by JT-1.

 The user of the subroutine BNDACC provides MT,JT,C and F for
 T=1,...,Q. Not all of this data must be supplied at once.

 Following the processing of the various blocks (E F), the matrix
 (A B) has been transformed to the form (R D) where R is upper
 triangular and banded with bandwidth NB. The least squares
 system Rx = d is then easily solved using back substitution by
 executing the statement CALL BNDSOL(1,...). The sequence of
 values for JT must be nondecreasing. This may require some
 preliminary interchanges of rows and columns of the matrix A.

 The primary reason for these subroutines is that the total
 processing can take place in a working array of dimension MU by
 NB+1. An acceptable value for MU is

 MU = MAX(MT + N + 1),

 where N is the number of unknowns.

 Here the maximum is taken over all values of MT for T=1,...,Q.
 Notice that MT can be taken to be a small as one, showing that
 MU can be as small as N+2. The subprogram BNDACC processes the
 rows more efficiently if MU is large enough so that each new
 block (C F) has a distinct value of JT.

 The four principle parts of these algorithms are obtained by the

SLATEC2 (AAAAAA through D9UPAK) - 79

 following call statements

 CALL BNDACC(...) Introduce new blocks of data.

 CALL BNDSOL(1,...)Compute solution vector and length of
 residual vector.

 CALL BNDSOL(2,...)Given any row vector H solve YR = H for the
 row vector Y.

 CALL BNDSOL(3,...)Given any column vector W solve RZ = W for
 the column vector Z.

 The dots in the above call statements indicate additional
 arguments that will be specified in the following paragraphs.

 The user must dimension the array appearing in the call list..
 G(MDG,NB+1)

 Description of calling sequence for BNDACC..

 The entire set of parameters for BNDACC are

 Input..

 G(*,*) The working array into which the user will
 place the MT by NB+1 block (C F) in rows IR
 through IR+MT-1, columns 1 through NB+1.
 See descriptions of IR and MT below.

 MDG The number of rows in the working array
 G(*,*). The value of MDG should be .GE. MU.
 The value of MU is defined in the abstract
 of these subprograms.

 NB The bandwidth of the data matrix A.

 IP Set by the user to the value 1 before the
 first call to BNDACC. Its subsequent value
 is controlled by BNDACC to set up for the
 next call to BNDACC.

 IR Index of the row of G(*,*) where the user is
 to place the new block of data (C F). Set by
 the user to the value 1 before the first call
 to BNDACC. Its subsequent value is controlled
 by BNDACC. A value of IR .GT. MDG is considered
 an error.

 MT,JT Set by the user to indicate respectively the
 number of new rows of data in the block and
 the index of the first nonzero column in that
 set of rows (E F) = (0 C 0 F) being processed.

 Output..

 G(*,*) The working array which will contain the
 processed rows of that part of the data
 matrix which has been passed to BNDACC.

SLATEC2 (AAAAAA through D9UPAK) - 80

 IP,IR The values of these arguments are advanced by
 BNDACC to be ready for storing and processing
 a new block of data in G(*,*).

 Description of calling sequence for BNDSOL..

 The user must dimension the arrays appearing in the call list..

 G(MDG,NB+1), X(N)

 The entire set of parameters for BNDSOL are

 Input..

 MODE Set by the user to one of the values 1, 2, or
 3. These values respectively indicate that
 the solution of AX = B, YR = H or RZ = W is
 required.

 G(*,*),MDG, These arguments all have the same meaning and
 NB,IP,IR contents as following the last call to BNDACC.

 X(*) With mode=2 or 3 this array contains,
 respectively, the right-side vectors H or W of
 the systems YR = H or RZ = W.

 N The number of variables in the solution
 vector. If any of the N diagonal terms are
 zero the subroutine BNDSOL prints an
 appropriate message. This condition is
 considered an error.

 Output..

 X(*) This array contains the solution vectors X,
 Y or Z of the systems AX = B, YR = H or
 RZ = W depending on the value of MODE=1,
 2 or 3.

 RNORM If MODE=1 RNORM is the Euclidean length of the
 residual vector AX-B. When MODE=2 or 3 RNORM
 is set to zero.

 Remarks..

 To obtain the upper triangular matrix and transformed right-hand
 side vector D so that the super diagonals of R form the columns
 of G(*,*), execute the following Fortran statements.

 NBP1=NB+1

 DO 10 J=1, NBP1

 10 G(IR,J) = 0.E0

 MT=1

 JT=N+1

 CALL BNDACC(G,MDG,NB,IP,IR,MT,JT)

SLATEC2 (AAAAAA through D9UPAK) - 81

 ***REFERENCES C. L. Lawson and R. J. Hanson, Solving Least Squares
 Problems, Prentice-Hall, Inc., 1974, Chapter 27.
 ***ROUTINES CALLED H12, XERMSG
 ***REVISION HISTORY (YYMMDD)
 790101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 891006 Cosmetic changes to prologue. (WRB)
 891006 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 82

BNDSOL

 SUBROUTINE BNDSOL (MODE, G, MDG, NB, IP, IR, X, N, RNORM)
 ***BEGIN PROLOGUE BNDSOL
 ***PURPOSE Solve the least squares problem for a banded matrix using
 sequential accumulation of rows of the data matrix.
 Exactly one right-hand side vector is permitted.
 ***LIBRARY SLATEC
 ***CATEGORY D9
 ***TYPE SINGLE PRECISION (BNDSOL-S, DBNDSL-D)
 ***KEYWORDS BANDED MATRIX, CURVE FITTING, LEAST SQUARES
 ***AUTHOR Lawson, C. L., (JPL)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 These subroutines solve the least squares problem Ax = b for
 banded matrices A using sequential accumulation of rows of the
 data matrix. Exactly one right-hand side vector is permitted.

 These subroutines are intended for the type of least squares
 systems that arise in applications such as curve or surface
 fitting of data. The least squares equations are accumulated and
 processed using only part of the data. This requires a certain
 user interaction during the solution of Ax = b.

 Specifically, suppose the data matrix (A B) is row partitioned
 into Q submatrices. Let (E F) be the T-th one of these
 submatrices where E = (0 C 0). Here the dimension of E is MT by N
 and the dimension of C is MT by NB. The value of NB is the
 bandwidth of A. The dimensions of the leading block of zeros in E
 are MT by JT-1.

 The user of the subroutine BNDACC provides MT,JT,C and F for
 T=1,...,Q. Not all of this data must be supplied at once.

 Following the processing of the various blocks (E F), the matrix
 (A B) has been transformed to the form (R D) where R is upper
 triangular and banded with bandwidth NB. The least squares
 system Rx = d is then easily solved using back substitution by
 executing the statement CALL BNDSOL(1,...). The sequence of
 values for JT must be nondecreasing. This may require some
 preliminary interchanges of rows and columns of the matrix A.

 The primary reason for these subroutines is that the total
 processing can take place in a working array of dimension MU by
 NB+1. An acceptable value for MU is

 MU = MAX(MT + N + 1),

 where N is the number of unknowns.

 Here the maximum is taken over all values of MT for T=1,...,Q.
 Notice that MT can be taken to be a small as one, showing that
 MU can be as small as N+2. The subprogram BNDACC processes the
 rows more efficiently if MU is large enough so that each new
 block (C F) has a distinct value of JT.

 The four principle parts of these algorithms are obtained by the

SLATEC2 (AAAAAA through D9UPAK) - 83

 following call statements

 CALL BNDACC(...) Introduce new blocks of data.

 CALL BNDSOL(1,...)Compute solution vector and length of
 residual vector.

 CALL BNDSOL(2,...)Given any row vector H solve YR = H for the
 row vector Y.

 CALL BNDSOL(3,...)Given any column vector W solve RZ = W for
 the column vector Z.

 The dots in the above call statements indicate additional
 arguments that will be specified in the following paragraphs.

 The user must dimension the array appearing in the call list..
 G(MDG,NB+1)

 Description of calling sequence for BNDACC..

 The entire set of parameters for BNDACC are

 Input..

 G(*,*) The working array into which the user will
 place the MT by NB+1 block (C F) in rows IR
 through IR+MT-1, columns 1 through NB+1.
 See descriptions of IR and MT below.

 MDG The number of rows in the working array
 G(*,*). The value of MDG should be .GE. MU.
 The value of MU is defined in the abstract
 of these subprograms.

 NB The bandwidth of the data matrix A.

 IP Set by the user to the value 1 before the
 first call to BNDACC. Its subsequent value
 is controlled by BNDACC to set up for the
 next call to BNDACC.

 IR Index of the row of G(*,*) where the user is
 the user to the value 1 before the first call
 to BNDACC. Its subsequent value is controlled
 by BNDACC. A value of IR .GT. MDG is considered
 an error.

 MT,JT Set by the user to indicate respectively the
 number of new rows of data in the block and
 the index of the first nonzero column in that
 set of rows (E F) = (0 C 0 F) being processed.
 Output..

 G(*,*) The working array which will contain the
 processed rows of that part of the data
 matrix which has been passed to BNDACC.

 IP,IR The values of these arguments are advanced by
 BNDACC to be ready for storing and processing

SLATEC2 (AAAAAA through D9UPAK) - 84

 a new block of data in G(*,*).

 Description of calling sequence for BNDSOL..

 The user must dimension the arrays appearing in the call list..

 G(MDG,NB+1), X(N)

 The entire set of parameters for BNDSOL are

 Input..

 MODE Set by the user to one of the values 1, 2, or
 3. These values respectively indicate that
 the solution of AX = B, YR = H or RZ = W is
 required.

 G(*,*),MDG, These arguments all have the same meaning and
 NB,IP,IR contents as following the last call to BNDACC.

 X(*) With mode=2 or 3 this array contains,
 respectively, the right-side vectors H or W of
 the systems YR = H or RZ = W.

 N The number of variables in the solution
 vector. If any of the N diagonal terms are
 zero the subroutine BNDSOL prints an
 appropriate message. This condition is
 considered an error.

 Output..

 X(*) This array contains the solution vectors X,
 Y or Z of the systems AX = B, YR = H or
 RZ = W depending on the value of MODE=1,
 2 or 3.

 RNORM If MODE=1 RNORM is the Euclidean length of the
 residual vector AX-B. When MODE=2 or 3 RNORM
 is set to zero.

 Remarks..

 To obtain the upper triangular matrix and transformed right-hand
 side vector D so that the super diagonals of R form the columns
 of G(*,*), execute the following Fortran statements.

 NBP1=NB+1

 DO 10 J=1, NBP1

 10 G(IR,J) = 0.E0

 MT=1

 JT=N+1

 CALL BNDACC(G,MDG,NB,IP,IR,MT,JT)

 ***REFERENCES C. L. Lawson and R. J. Hanson, Solving Least Squares

SLATEC2 (AAAAAA through D9UPAK) - 85

 Problems, Prentice-Hall, Inc., 1974, Chapter 27.
 ***ROUTINES CALLED XERMSG
 ***REVISION HISTORY (YYMMDD)
 790101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 891006 Cosmetic changes to prologue. (WRB)
 891006 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 86

BQR

 SUBROUTINE BQR (NM, N, MB, A, T, R, IERR, NV, RV)
 ***BEGIN PROLOGUE BQR
 ***PURPOSE Compute some of the eigenvalues of a real symmetric
 matrix using the QR method with shifts of origin.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4A6
 ***TYPE SINGLE PRECISION (BQR-S)
 ***KEYWORDS EIGENVALUES, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of the ALGOL procedure BQR,
 NUM. MATH. 16, 85-92(1970) by Martin, Reinsch, and Wilkinson.
 HANDBOOK FOR AUTO. COMP., VOL II-LINEAR ALGEBRA, 266-272(1971).

 This subroutine finds the eigenvalue of smallest (usually)
 magnitude of a REAL SYMMETRIC BAND matrix using the
 QR algorithm with shifts of origin. Consecutive calls
 can be made to find further eigenvalues.

 On INPUT

 NM must be set to the row dimension of the two-dimensional
 array parameter, A, as declared in the calling program
 dimension statement. NM is an INTEGER variable.

 N is the order of the matrix A. N is an INTEGER variable.
 N must be less than or equal to NM.

 MB is the (half) band width of the matrix, defined as the
 number of adjacent diagonals, including the principal
 diagonal, required to specify the non-zero portion of the
 lower triangle of the matrix. MB is an INTEGER variable.
 MB must be less than or equal to N on first call.

 A contains the lower triangle of the symmetric band input
 matrix stored as an N by MB array. Its lowest subdiagonal
 is stored in the last N+1-MB positions of the first column,
 its next subdiagonal in the last N+2-MB positions of the
 second column, further subdiagonals similarly, and finally
 its principal diagonal in the N positions of the last column.
 Contents of storages not part of the matrix are arbitrary.
 On a subsequent call, its output contents from the previous
 call should be passed. A is a two-dimensional REAL array,
 dimensioned A(NM,MB).

 T specifies the shift (of eigenvalues) applied to the diagonal
 of A in forming the input matrix. What is actually determined
 is the eigenvalue of A+TI (I is the identity matrix) nearest
 to T. On a subsequent call, the output value of T from the
 previous call should be passed if the next nearest eigenvalue
 is sought. T is a REAL variable.

 R should be specified as zero on the first call, and as its
 output value from the previous call on a subsequent call.
 It is used to determine when the last row and column of

SLATEC2 (AAAAAA through D9UPAK) - 87

 the transformed band matrix can be regarded as negligible.
 R is a REAL variable.

 NV must be set to the dimension of the array parameter RV
 as declared in the calling program dimension statement.
 NV is an INTEGER variable.

 On OUTPUT

 A contains the transformed band matrix. The matrix A+TI
 derived from the output parameters is similar to the
 input A+TI to within rounding errors. Its last row and
 column are null (if IERR is zero).

 T contains the computed eigenvalue of A+TI (if IERR is zero),
 where I is the identity matrix.

 R contains the maximum of its input value and the norm of the
 last column of the input matrix A.

 IERR is an INTEGER flag set to
 Zero for normal return,
 J if the J-th eigenvalue has not been
 determined after a total of 30 iterations.

 RV is a one-dimensional REAL array of dimension NV which is
 at least (2*MB**2+4*MB-3), used for temporary storage. The
 first (3*MB-2) locations correspond to the ALGOL array B,
 the next (2*MB-1) locations correspond to the ALGOL array H,
 and the final (2*MB**2-MB) locations correspond to the MB
 by (2*MB-1) ALGOL array U.

 NOTE. For a subsequent call, N should be replaced by N-1, but
 MB should not be altered even when it exceeds the current N.

 Calls PYTHAG(A,B) for SQRT(A**2 + B**2).

 Questions and comments should be directed to B. S. Garbow,
 Applied Mathematics Division, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED PYTHAG
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 88

BSKIN

 SUBROUTINE BSKIN (X, N, KODE, M, Y, NZ, IERR)
 ***BEGIN PROLOGUE BSKIN
 ***PURPOSE Compute repeated integrals of the K-zero Bessel function.
 ***LIBRARY SLATEC
 ***CATEGORY C10F
 ***TYPE SINGLE PRECISION (BSKIN-S, DBSKIN-D)
 ***KEYWORDS BICKLEY FUNCTIONS, EXPONENTIAL INTEGRAL,
 INTEGRALS OF BESSEL FUNCTIONS, K-ZERO BESSEL FUNCTION
 ***AUTHOR Amos, D. E., (SNLA)
 ***DESCRIPTION

 The following definitions are used in BSKIN:

 Definition 1
 KI(0,X) = K-zero Bessel function.

 Definition 2
 KI(N,X) = Bickley Function
 = integral from X to infinity of KI(N-1,t)dt
 for X .ge. 0 and N = 1,2,...
 __
 BSKIN computes sequences of Bickley functions (repeated integrals
 of the K0 Bessel function); i.e. for fixed X and N and K=1,...,
 BSKIN computes the M-member sequence

 Y(K) = KI(N+K-1,X) for KODE=1
 or
 Y(K) = EXP(X)*KI(N+K-1,X) for KODE=2,

 for N.ge.0 and X.ge.0 (N and X cannot be zero simultaneously).

 INPUT
 X - Argument, X .ge. 0.0E0
 N - Order of first member of the sequence N .ge. 0
 KODE - Selection parameter
 KODE = 1 returns Y(K)= KI(N+K-1,X), K=1,M
 = 2 returns Y(K)=EXP(X)*KI(N+K-1,X), K=1,M
 M - Number of members in the sequence, M.ge.1

 OUTPUT
 Y - A vector of dimension at least M containing the
 sequence selected by KODE.
 NZ - Underflow flag
 NZ = 0 means computation completed
 = M means an exponential underflow occurred on
 KODE=1. Y(K)=0.0E0, K=1,...,M is returned
 IERR - Error flag
 IERR = 0, Normal return, computation completed.
 = 1, Input error, no computation.
 = 2, Error, no computation. The
 termination condition was not met.

 The nominal computational accuracy is the maximum of unit
 roundoff (=R1MACH(4)) and 1.0e-18 since critical constants
 are given to only 18 digits.

SLATEC2 (AAAAAA through D9UPAK) - 89

 DBSKIN is the double precision version of BSKIN.

 *Long Description:

 Numerical recurrence on

 (L-1)*KI(L,X) = X(KI(L-3,X) - KI(L-1,X)) + (L-2)*KI(L-2,X)

 is stable where recurrence is carried forward or backward
 away from INT(X+0.5). The power series for indices 0,1 and 2
 on 0.le.X.le. 2 starts a stable recurrence for indices
 greater than 2. If N is sufficiently large (N.gt.NLIM), the
 uniform asymptotic expansion for N to INFINITY is more
 economical. On X.gt.2 the recursion is started by evaluating
 the uniform expansion for the three members whose indices are
 closest to INT(X+0.5) within the set N,...,N+M-1. Forward
 recurrence, backward recurrence or both, complete the
 sequence depending on the relation of INT(X+0.5) to the
 indices N,...,N+M-1.

 ***REFERENCES D. E. Amos, Uniform asymptotic expansions for
 exponential integrals E(N,X) and Bickley functions
 KI(N,X), ACM Transactions on Mathematical Software,
 1983.
 D. E. Amos, A portable Fortran subroutine for the
 Bickley functions KI(N,X), Algorithm 609, ACM
 Transactions on Mathematical Software, 1983.
 ***ROUTINES CALLED BKIAS, BKISR, EXINT, GAMRN, I1MACH, R1MACH
 ***REVISION HISTORY (YYMMDD)
 820601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 891009 Removed unreferenced statement label. (WRB)
 891009 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 90

BSPDOC

 SUBROUTINE BSPDOC
 ***BEGIN PROLOGUE BSPDOC
 ***PURPOSE Documentation for BSPLINE, a package of subprograms for
 working with piecewise polynomial functions
 in B-representation.
 ***LIBRARY SLATEC
 ***CATEGORY E, E1A, K, Z
 ***TYPE ALL (BSPDOC-A)
 ***KEYWORDS B-SPLINE, DOCUMENTATION, SPLINES
 ***AUTHOR Amos, D. E., (SNLA)
 ***DESCRIPTION

 Abstract
 BSPDOC is a non-executable, B-spline documentary routine.
 The narrative describes a B-spline and the routines
 necessary to manipulate B-splines at a fairly high level.
 The basic package described herein is that of reference
 5 with names altered to prevent duplication and conflicts
 with routines from reference 3. The call lists used here
 are also different. Work vectors were added to ensure
 portability and proper execution in an overlay environ-
 ment. These work arrays can be used for other purposes
 except as noted in BSPVN. While most of the original
 routines in reference 5 were restricted to orders 20
 or less, this restriction was removed from all routines
 except the quadrature routine BSQAD. (See the section
 below on differentiation and integration for details.)

 The subroutines referenced below are single precision
 routines. Corresponding double precision versions are also
 part of the package, and these are referenced by prefixing
 a D in front of the single precision name. For example,
 BVALU and DBVALU are the single and double precision
 versions for evaluating a B-spline or any of its deriva-
 tives in the B-representation.

 ****Description of B-Splines****

 A collection of polynomials of fixed degree K-1 defined on a
 subdivision (X(I),X(I+1)), I=1,...,M-1 of (A,B) with X(1)=A,
 X(M)=B is called a B-spline of order K. If the spline has K-2
 continuous derivatives on (A,B), then the B-spline is simply
 called a spline of order K. Each of the M-1 polynomial pieces
 has K coefficients, making a total of K(M-1) parameters. This
 B-spline and its derivatives have M-2 jumps at the subdivision
 points X(I), I=2,...,M-1. Continuity requirements at these
 subdivision points add constraints and reduce the number of free
 parameters. If a B-spline is continuous at each of the M-2 sub-
 division points, there are K(M-1)-(M-2) free parameters; if in
 addition the B-spline has continuous first derivatives, there
 are K(M-1)-2(M-2) free parameters, etc., until we get to a
 spline where we have K(M-1)-(K-1)(M-2) = M+K-2 free parameters.
 Thus, the principle is that increasing the continuity of
 derivatives decreases the number of free parameters and
 conversely.

SLATEC2 (AAAAAA through D9UPAK) - 91

 The points at which the polynomials are tied together by the
 continuity conditions are called knots. If two knots are
 allowed to come together at some X(I), then we say that we
 have a knot of multiplicity 2 there, and the knot values are
 the X(I) value. If we reverse the procedure of the first
 paragraph, we find that adding a knot to increase multiplicity
 increases the number of free parameters and, according to the
 principle above, we thereby introduce a discontinuity in what
 was the highest continuous derivative at that knot. Thus, the
 number of free parameters is N = NU+K-2 where NU is the sum
 of multiplicities at the X(I) values with X(1) and X(M) of
 multiplicity 1 (NU = M if all knots are simple, i.e., for a
 spline, all knots have multiplicity 1.) Each knot can have a
 multiplicity of at most K. A B-spline is commonly written in the
 B-representation

 Y(X) = sum(A(I)*B(I,X), I=1 , N)

 to show the explicit dependence of the spline on the free
 parameters or coefficients A(I)=BCOEF(I) and basis functions
 B(I,X). These basis functions are themselves special B-splines
 which are zero except on (at most) K adjoining intervals where
 each B(I,X) is positive and, in most cases, hat or bell-
 shaped. In order for the nonzero part of B(1,X) to be a spline
 covering (X(1),X(2)), it is necessary to put K-1 knots to the
 left of A and similarly for B(N,X) to the right of B. Thus, the
 total number of knots for this representation is NU+2K-2 = N+K.
 These knots are carried in an array T(*) dimensioned by at least
 N+K. From the construction, A=T(K) and B=T(N+1) and the spline is
 defined on T(K).LE.X.LE.T(N+1). The nonzero part of each basis
 function lies in the Interval (T(I),T(I+K)). In many problems
 where extrapolation beyond A or B is not anticipated, it is common
 practice to set T(1)=T(2)=...=T(K)=A and T(N+1)=T(N+2)=...=
 T(N+K)=B. In summary, since T(K) and T(N+1) as well as
 interior knots can have multiplicity K, the number of free
 parameters N = sum of multiplicities - K. The fact that each
 B(I,X) function is nonzero over at most K intervals means that
 for a given X value, there are at most K nonzero terms of the
 sum. This leads to banded matrices in linear algebra problems,
 and references 3 and 6 take advantage of this in con-
 structing higher level routines to achieve speed and avoid
 ill-conditioning.

 ****Basic Routines****

 The basic routines which most casual users will need are those
 concerned with direct evaluation of splines or B-splines.
 Since the B-representation, denoted by (T,BCOEF,N,K), is
 preferred because of numerical stability, the knots T(*), the
 B-spline coefficients BCOEF(*), the number of coefficients N,
 and the order K of the polynomial pieces (of degree K-1) are
 usually given. While the knot array runs from T(1) to T(N+K),
 the B-spline is normally defined on the interval T(K).LE.X.LE.
 T(N+1). To evaluate the B-spline or any of its derivatives
 on this interval, one can use

 Y = BVALU(T,BCOEF,N,K,ID,X,INBV,WORK)

 where ID is an integer for the ID-th derivative, 0.LE.ID.LE.K-1.
 ID=0 gives the zero-th derivative or B-spline value at X.

SLATEC2 (AAAAAA through D9UPAK) - 92

 If X.LT.T(K) or X.GT.T(N+1), whether by mistake or the result
 of round off accumulation in incrementing X, BVALU gives a
 diagnostic. INBV is an initialization parameter which is set
 to 1 on the first call. Distinct splines require distinct
 INBV parameters. WORK is a scratch vector of length at least
 3*K.

 When more conventional communication is needed for publication,
 physical interpretation, etc., the B-spline coefficients can
 be converted to piecewise polynomial (PP) coefficients. Thus,
 the breakpoints (distinct knots) XI(*), the number of
 polynomial pieces LXI, and the (right) derivatives C(*,J) at
 each breakpoint XI(J) are needed to define the Taylor
 expansion to the right of XI(J) on each interval XI(J).LE.
 X.LT.XI(J+1), J=1,LXI where XI(1)=A and XI(LXI+1)=B.
 These are obtained from the (T,BCOEF,N,K) representation by

 CALL BSPPP(T,BCOEF,N,K,LDC,C,XI,LXI,WORK)

 where LDC.GE.K is the leading dimension of the matrix C and
 WORK is a scratch vector of length at least K*(N+3).
 Then the PP-representation (C,XI,LXI,K) of Y(X), denoted
 by Y(J,X) on each interval XI(J).LE.X.LT.XI(J+1), is

 Y(J,X) = sum(C(I,J)*((X-XI(J))**(I-1))/factorial(I-1), I=1,K)

 for J=1,...,LXI. One must view this conversion from the B-
 to the PP-representation with some skepticism because the
 conversion may lose significant digits when the B-spline
 varies in an almost discontinuous fashion. To evaluate
 the B-spline or any of its derivatives using the PP-
 representation, one uses

 Y = PPVAL(LDC,C,XI,LXI,K,ID,X,INPPV)

 where ID and INPPV have the same meaning and usage as ID and
 INBV in BVALU.

 To determine to what extent the conversion process loses
 digits, compute the relative error ABS((Y1-Y2)/Y2) over
 the X interval with Y1 from PPVAL and Y2 from BVALU. A
 major reason for considering PPVAL is that evaluation is
 much faster than that from BVALU.

 Recall that when multiple knots are encountered, jump type
 discontinuities in the B-spline or its derivatives occur
 at these knots, and we need to know that BVALU and PPVAL
 return right limiting values at these knots except at
 X=B where left limiting values are returned. These values
 are used for the Taylor expansions about left end points of
 breakpoint intervals. That is, the derivatives C(*,J) are
 right derivatives. Note also that a computed X value which,
 mathematically, would be a knot value may differ from the knot
 by a round off error. When this happens in evaluating a dis-
 continuous B-spline or some discontinuous derivative, the
 value at the knot and the value at X can be radically
 different. In this case, setting X to a T or XI value makes
 the computation precise. For left limiting values at knots
 other than X=B, see the prologues to BVALU and other
 routines.

SLATEC2 (AAAAAA through D9UPAK) - 93

 ****Interpolation****

 BINTK is used to generate B-spline parameters (T,BCOEF,N,K)
 which will interpolate the data by calls to BVALU. A similar
 interpolation can also be done for cubic splines using BINT4
 or the code in reference 7. If the PP-representation is given,
 one can evaluate this representation at an appropriate number of
 abscissas to create data then use BINTK or BINT4 to generate
 the B-representation.

 ****Differentiation and Integration****

 Derivatives of B-splines are obtained from BVALU or PPVAL.
 Integrals are obtained from BSQAD using the B-representation
 (T,BCOEF,N,K) and PPQAD using the PP-representation (C,XI,LXI,
 K). More complicated integrals involving the product of a
 of a function F and some derivative of a B-spline can be
 evaluated with BFQAD or PFQAD using the B- or PP- represen-
 tations respectively. All quadrature routines, except for PPQAD,
 are limited in accuracy to 18 digits or working precision,
 whichever is smaller. PPQAD is limited to working precision
 only. In addition, the order K for BSQAD is limited to 20 or
 less. If orders greater than 20 are required, use BFQAD with
 F(X) = 1.

 ****Extrapolation****

 Extrapolation outside the interval (A,B) can be accomplished
 easily by the PP-representation using PPVAL. However,
 caution should be exercised, especially when several knots
 are located at A or B or when the extrapolation is carried
 significantly beyond A or B. On the other hand, direct
 evaluation with BVALU outside A=T(K).LE.X.LE.T(N+1)=B
 produces an error message, and some manipulation of the knots
 and coefficients are needed to extrapolate with BVALU. This
 process is described in reference 6.

 ****Curve Fitting and Smoothing****

 Unless one has many accurate data points, direct inter-
 polation is not recommended for summarizing data. The
 results are often not in accordance with intuition since the
 fitted curve tends to oscillate through the set of points.
 Monotone splines (reference 7) can help curb this undulating
 tendency but constrained least squares is more likely to give an
 acceptable fit with fewer parameters. Subroutine FC, des-
 cribed in reference 6, is recommended for this purpose. The
 output from this fitting process is the B-representation.

 **** Routines in the B-Spline Package ****

 Single Precision Routines

 The subroutines referenced below are SINGLE PRECISION
 routines. Corresponding DOUBLE PRECISION versions are also
 part of the package and these are referenced by prefixing
 a D in front of the single precision name. For example,
 BVALU and DBVALU are the SINGLE and DOUBLE PRECISION
 versions for evaluating a B-spline or any of its deriva-

SLATEC2 (AAAAAA through D9UPAK) - 94

 tives in the B-representation.

 BINT4 - interpolates with splines of order 4
 BINTK - interpolates with splines of order k
 BSQAD - integrates the B-representation on subintervals
 PPQAD - integrates the PP-representation
 BFQAD - integrates the product of a function F and any spline
 derivative in the B-representation
 PFQAD - integrates the product of a function F and any spline
 derivative in the PP-representation
 BVALU - evaluates the B-representation or a derivative
 PPVAL - evaluates the PP-representation or a derivative
 INTRV - gets the largest index of the knot to the left of x
 BSPPP - converts from B- to PP-representation
 BSPVD - computes nonzero basis functions and derivatives at x
 BSPDR - sets up difference array for BSPEV
 BSPEV - evaluates the B-representation and derivatives
 BSPVN - called by BSPEV, BSPVD, BSPPP and BINTK for function and
 derivative evaluations
 Auxiliary Routines

 BSGQ8,PPGQ8,BNSLV,BNFAC,XERMSG,DBSGQ8,DPPGQ8,DBNSLV,DBNFAC

 Machine Dependent Routines

 I1MACH, R1MACH, D1MACH

 ***REFERENCES 1. D. E. Amos, Computation with splines and
 B-splines, Report SAND78-1968, Sandia
 Laboratories, March 1979.
 2. D. E. Amos, Quadrature subroutines for splines and
 B-splines, Report SAND79-1825, Sandia Laboratories,
 December 1979.
 3. Carl de Boor, A Practical Guide to Splines, Applied
 Mathematics Series 27, Springer-Verlag, New York,
 1978.
 4. Carl de Boor, On calculating with B-Splines, Journal
 of Approximation Theory 6, (1972), pp. 50-62.
 5. Carl de Boor, Package for calculating with B-splines,
 SIAM Journal on Numerical Analysis 14, 3 (June 1977),
 pp. 441-472.
 6. R. J. Hanson, Constrained least squares curve fitting
 to discrete data using B-splines, a users guide,
 Report SAND78-1291, Sandia Laboratories, December
 1978.
 7. F. N. Fritsch and R. E. Carlson, Monotone piecewise
 cubic interpolation, SIAM Journal on Numerical Ana-
 lysis 17, 2 (April 1980), pp. 238-246.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 810223 DATE WRITTEN
 861211 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900723 PURPOSE section revised. (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 95

BSPDR

 SUBROUTINE BSPDR (T, A, N, K, NDERIV, AD)
 ***BEGIN PROLOGUE BSPDR
 ***PURPOSE Use the B-representation to construct a divided difference
 table preparatory to a (right) derivative calculation.
 ***LIBRARY SLATEC
 ***CATEGORY E3
 ***TYPE SINGLE PRECISION (BSPDR-S, DBSPDR-D)
 ***KEYWORDS B-SPLINE, DATA FITTING, DIFFERENTIATION OF SPLINES,
 INTERPOLATION
 ***AUTHOR Amos, D. E., (SNLA)
 ***DESCRIPTION

 Written by Carl de Boor and modified by D. E. Amos

 Abstract
 BSPDR is the BSPLDR routine of the reference.

 BSPDR uses the B-representation (T,A,N,K) to construct a
 divided difference table ADIF preparatory to a (right)
 derivative calculation in BSPEV. The lower triangular matrix
 ADIF is stored in vector AD by columns. The arrays are
 related by

 ADIF(I,J) = AD(I-J+1 + (2*N-J+2)*(J-1)/2)

 I = J,N , J = 1,NDERIV .

 Description of Arguments
 Input
 T - knot vector of length N+K
 A - B-spline coefficient vector of length N
 N - number of B-spline coefficients
 N = sum of knot multiplicities-K
 K - order of the spline, K .GE. 1
 NDERIV - number of derivatives, 1 .LE. NDERIV .LE. K.
 NDERIV=1 gives the zero-th derivative = function
 value

 Output
 AD - table of differences in a vector of length
 (2*N-NDERIV+1)*NDERIV/2 for input to BSPEV

 Error Conditions
 Improper input is a fatal error

 ***REFERENCES Carl de Boor, Package for calculating with B-splines,
 SIAM Journal on Numerical Analysis 14, 3 (June 1977),
 pp. 441-472.
 ***ROUTINES CALLED XERMSG
 ***REVISION HISTORY (YYMMDD)
 800901 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.

SLATEC2 (AAAAAA through D9UPAK) - 96

 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 97

BSPEV

 SUBROUTINE BSPEV (T, AD, N, K, NDERIV, X, INEV, SVALUE, WORK)
 ***BEGIN PROLOGUE BSPEV
 ***PURPOSE Calculate the value of the spline and its derivatives from
 the B-representation.
 ***LIBRARY SLATEC
 ***CATEGORY E3, K6
 ***TYPE SINGLE PRECISION (BSPEV-S, DBSPEV-D)
 ***KEYWORDS B-SPLINE, DATA FITTING, INTERPOLATION, SPLINES
 ***AUTHOR Amos, D. E., (SNLA)
 ***DESCRIPTION

 Written by Carl de Boor and modified by D. E. Amos

 Abstract
 BSPEV is the BSPLEV routine of the reference.

 BSPEV calculates the value of the spline and its derivatives
 at X from the B-representation (T,A,N,K) and returns them
 in SVALUE(I),I=1,NDERIV, T(K) .LE. X .LE. T(N+1). AD(I) can
 be the B-spline coefficients A(I), I=1,N if NDERIV=1. Other-
 wise AD must be computed before hand by a call to BSPDR (T,A,
 N,K,NDERIV,AD). If X=T(I),I=K,N, right limiting values are
 obtained.

 To compute left derivatives or left limiting values at a
 knot T(I), replace N by I-1 and set X=T(I), I=K+1,N+1.

 BSPEV calls INTRV, BSPVN

 Description of Arguments
 Input
 T - knot vector of length N+K
 AD - vector of length (2*N-NDERIV+1)*NDERIV/2 containing
 the difference table from BSPDR.
 N - number of B-spline coefficients
 N = sum of knot multiplicities-K
 K - order of the B-spline, K .GE. 1
 NDERIV - number of derivatives, 1 .LE. NDERIV .LE. K.
 NDERIV=1 gives the zero-th derivative = function
 value
 X - argument, T(K) .LE. X .LE. T(N+1)
 INEV - an initialization parameter which must be set
 to 1 the first time BSPEV is called.

 Output
 INEV - INEV contains information for efficient process-
 ing after the initial call and INEV must not
 be changed by the user. Distinct splines require
 distinct INEV parameters.
 SVALUE - vector of length NDERIV containing the spline
 value in SVALUE(1) and the NDERIV-1 derivatives
 in the remaining components.
 WORK - work vector of length 3*K

 Error Conditions
 Improper input is a fatal error.

SLATEC2 (AAAAAA through D9UPAK) - 98

 ***REFERENCES Carl de Boor, Package for calculating with B-splines,
 SIAM Journal on Numerical Analysis 14, 3 (June 1977),
 pp. 441-472.
 ***ROUTINES CALLED BSPVN, INTRV, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800901 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 99

BSPPP

 SUBROUTINE BSPPP (T, A, N, K, LDC, C, XI, LXI, WORK)
 ***BEGIN PROLOGUE BSPPP
 ***PURPOSE Convert the B-representation of a B-spline to the piecewise
 polynomial (PP) form.
 ***LIBRARY SLATEC
 ***CATEGORY E3, K6
 ***TYPE SINGLE PRECISION (BSPPP-S, DBSPPP-D)
 ***KEYWORDS B-SPLINE, PIECEWISE POLYNOMIAL
 ***AUTHOR Amos, D. E., (SNLA)
 ***DESCRIPTION

 Written by Carl de Boor and modified by D. E. Amos

 Abstract
 BSPPP is the BSPLPP routine of the reference.

 BSPPP converts the B-representation (T,A,N,K) to the
 piecewise polynomial (PP) form (C,XI,LXI,K) for use with
 PPVAL. Here XI(*), the break point array of length LXI, is
 the knot array T(*) with multiplicities removed. The columns
 of the matrix C(I,J) contain the right Taylor derivatives
 for the polynomial expansion about XI(J) for the intervals
 XI(J) .LE. X .LE. XI(J+1), I=1,K, J=1,LXI. Function PPVAL
 makes this evaluation at a specified point X in
 XI(1) .LE. X .LE. XI(LXI(1) .LE. X .LE. XI+1)

 Description of Arguments
 Input
 T - knot vector of length N+K
 A - B-spline coefficient vector of length N
 N - number of B-spline coefficients
 N = sum of knot multiplicities-K
 K - order of the B-spline, K .GE. 1
 LDC - leading dimension of C, LDC .GE. K

 Output
 C - matrix of dimension at least (K,LXI) containing
 right derivatives at break points
 XI - XI break point vector of length LXI+1
 LXI - number of break points, LXI .LE. N-K+1
 WORK - work vector of length K*(N+3)

 Error Conditions
 Improper input is a fatal error

 ***REFERENCES Carl de Boor, Package for calculating with B-splines,
 SIAM Journal on Numerical Analysis 14, 3 (June 1977),
 pp. 441-472.
 ***ROUTINES CALLED BSPDR, BSPEV, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800901 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.

SLATEC2 (AAAAAA through D9UPAK) - 100

 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 101

BSPVD

 SUBROUTINE BSPVD (T, K, NDERIV, X, ILEFT, LDVNIK, VNIKX, WORK)
 ***BEGIN PROLOGUE BSPVD
 ***PURPOSE Calculate the value and all derivatives of order less than
 NDERIV of all basis functions which do not vanish at X.
 ***LIBRARY SLATEC
 ***CATEGORY E3, K6
 ***TYPE SINGLE PRECISION (BSPVD-S, DBSPVD-D)
 ***KEYWORDS DIFFERENTIATION OF B-SPLINE, EVALUATION OF B-SPLINE
 ***AUTHOR Amos, D. E., (SNLA)
 ***DESCRIPTION

 Written by Carl de Boor and modified by D. E. Amos

 Abstract
 BSPVD is the BSPLVD routine of the reference.

 BSPVD calculates the value and all derivatives of order
 less than NDERIV of all basis functions which do not
 (possibly) vanish at X. ILEFT is input such that
 T(ILEFT) .LE. X .LT. T(ILEFT+1). A call to INTRV(T,N+1,X,
 ILO,ILEFT,MFLAG) will produce the proper ILEFT. The output of
 BSPVD is a matrix VNIKX(I,J) of dimension at least (K,NDERIV)
 whose columns contain the K nonzero basis functions and
 their NDERIV-1 right derivatives at X, I=1,K, J=1,NDERIV.
 These basis functions have indices ILEFT-K+I, I=1,K,
 K .LE. ILEFT .LE. N. The nonzero part of the I-th basis
 function lies in (T(I),T(I+K)), I=1,N.

 If X=T(ILEFT+1) then VNIKX contains left limiting values
 (left derivatives) at T(ILEFT+1). In particular, ILEFT = N
 produces left limiting values at the right end point
 X=T(N+1). To obtain left limiting values at T(I), I=K+1,N+1,
 set X= next lower distinct knot, call INTRV to get ILEFT,
 set X=T(I), and then call BSPVD.

 Description of Arguments
 Input
 T - knot vector of length N+K, where
 N = number of B-spline basis functions
 N = sum of knot multiplicities-K
 K - order of the B-spline, K .GE. 1
 NDERIV - number of derivatives = NDERIV-1,
 1 .LE. NDERIV .LE. K
 X - argument of basis functions,
 T(K) .LE. X .LE. T(N+1)
 ILEFT - largest integer such that
 T(ILEFT) .LE. X .LT. T(ILEFT+1)
 LDVNIK - leading dimension of matrix VNIKX

 Output
 VNIKX - matrix of dimension at least (K,NDERIV) contain-
 ing the nonzero basis functions at X and their
 derivatives columnwise.
 WORK - a work vector of length (K+1)*(K+2)/2

 Error Conditions

SLATEC2 (AAAAAA through D9UPAK) - 102

 Improper input is a fatal error

 ***REFERENCES Carl de Boor, Package for calculating with B-splines,
 SIAM Journal on Numerical Analysis 14, 3 (June 1977),
 pp. 441-472.
 ***ROUTINES CALLED BSPVN, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800901 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 103

BSPVN

 SUBROUTINE BSPVN (T, JHIGH, K, INDEX, X, ILEFT, VNIKX, WORK,
 + IWORK)
 ***BEGIN PROLOGUE BSPVN
 ***PURPOSE Calculate the value of all (possibly) nonzero basis
 functions at X.
 ***LIBRARY SLATEC
 ***CATEGORY E3, K6
 ***TYPE SINGLE PRECISION (BSPVN-S, DBSPVN-D)
 ***KEYWORDS EVALUATION OF B-SPLINE
 ***AUTHOR Amos, D. E., (SNLA)
 ***DESCRIPTION

 Written by Carl de Boor and modified by D. E. Amos

 Abstract
 BSPVN is the BSPLVN routine of the reference.

 BSPVN calculates the value of all (possibly) nonzero basis
 functions at X of order MAX(JHIGH,(J+1)*(INDEX-1)), where
 T(K) .LE. X .LE. T(N+1) and J=IWORK is set inside the routine
 on the first call when INDEX=1. ILEFT is such that T(ILEFT)
 .LE. X .LT. T(ILEFT+1). A call to INTRV(T,N+1,X,ILO,ILEFT,
 MFLAG) produces the proper ILEFT. BSPVN calculates using the
 basic algorithm needed in BSPVD. If only basis functions are
 desired, setting JHIGH=K and INDEX=1 can be faster than
 calling BSPVD, but extra coding is required for derivatives
 (INDEX=2) and BSPVD is set up for this purpose.

 Left limiting values are set up as described in BSPVD.

 Description of Arguments
 Input
 T - knot vector of length N+K, where
 N = number of B-spline basis functions
 N = sum of knot multiplicities-K
 JHIGH - order of B-spline, 1 .LE. JHIGH .LE. K
 K - highest possible order
 INDEX - INDEX = 1 gives basis functions of order JHIGH
 = 2 denotes previous entry with WORK, IWORK
 values saved for subsequent calls to
 BSPVN.
 X - argument of basis functions,
 T(K) .LE. X .LE. T(N+1)
 ILEFT - largest integer such that
 T(ILEFT) .LE. X .LT. T(ILEFT+1)

 Output
 VNIKX - vector of length K for spline values.
 WORK - a work vector of length 2*K
 IWORK - a work parameter. Both WORK and IWORK contain
 information necessary to continue for INDEX = 2.
 When INDEX = 1 exclusively, these are scratch
 variables and can be used for other purposes.

 Error Conditions
 Improper input is a fatal error.

SLATEC2 (AAAAAA through D9UPAK) - 104

 ***REFERENCES Carl de Boor, Package for calculating with B-splines,
 SIAM Journal on Numerical Analysis 14, 3 (June 1977),
 pp. 441-472.
 ***ROUTINES CALLED XERMSG
 ***REVISION HISTORY (YYMMDD)
 800901 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 105

BSQAD

 SUBROUTINE BSQAD (T, BCOEF, N, K, X1, X2, BQUAD, WORK)
 ***BEGIN PROLOGUE BSQAD
 ***PURPOSE Compute the integral of a K-th order B-spline using the
 B-representation.
 ***LIBRARY SLATEC
 ***CATEGORY H2A2A1, E3, K6
 ***TYPE SINGLE PRECISION (BSQAD-S, DBSQAD-D)
 ***KEYWORDS INTEGRAL OF B-SPLINES, QUADRATURE
 ***AUTHOR Amos, D. E., (SNLA)
 ***DESCRIPTION

 Abstract
 BSQAD computes the integral on (X1,X2) of a K-th order
 B-spline using the B-representation (T,BCOEF,N,K). Orders
 K as high as 20 are permitted by applying a 2, 6, or 10
 point Gauss formula on subintervals of (X1,X2) which are
 formed by included (distinct) knots.

 If orders K greater than 20 are needed, use BFQAD with
 F(X) = 1.

 Description of Arguments
 Input
 T - knot array of length N+K
 BCOEF - B-spline coefficient array of length N
 N - length of coefficient array
 K - order of B-spline, 1 .LE. K .LE. 20
 X1,X2 - end points of quadrature interval in
 T(K) .LE. X .LE. T(N+1)

 Output
 BQUAD - integral of the B-spline over (X1,X2)
 WORK - work vector of length 3*K

 Error Conditions
 Improper input is a fatal error

 ***REFERENCES D. E. Amos, Quadrature subroutines for splines and
 B-splines, Report SAND79-1825, Sandia Laboratories,
 December 1979.
 ***ROUTINES CALLED BVALU, INTRV, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800901 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 106

BVALU

 FUNCTION BVALU (T, A, N, K, IDERIV, X, INBV, WORK)
 ***BEGIN PROLOGUE BVALU
 ***PURPOSE Evaluate the B-representation of a B-spline at X for the
 function value or any of its derivatives.
 ***LIBRARY SLATEC
 ***CATEGORY E3, K6
 ***TYPE SINGLE PRECISION (BVALU-S, DBVALU-D)
 ***KEYWORDS DIFFERENTIATION OF B-SPLINE, EVALUATION OF B-SPLINE
 ***AUTHOR Amos, D. E., (SNLA)
 ***DESCRIPTION

 Written by Carl de Boor and modified by D. E. Amos

 Abstract
 BVALU is the BVALUE function of the reference.

 BVALU evaluates the B-representation (T,A,N,K) of a B-spline
 at X for the function value on IDERIV = 0 or any of its
 derivatives on IDERIV = 1,2,...,K-1. Right limiting values
 (right derivatives) are returned except at the right end
 point X=T(N+1) where left limiting values are computed. The
 spline is defined on T(K) .LE. X .LE. T(N+1). BVALU returns
 a fatal error message when X is outside of this interval.

 To compute left derivatives or left limiting values at a
 knot T(I), replace N by I-1 and set X=T(I), I=K+1,N+1.

 BVALU calls INTRV

 Description of Arguments
 Input
 T - knot vector of length N+K
 A - B-spline coefficient vector of length N
 N - number of B-spline coefficients
 N = sum of knot multiplicities-K
 K - order of the B-spline, K .GE. 1
 IDERIV - order of the derivative, 0 .LE. IDERIV .LE. K-1
 IDERIV=0 returns the B-spline value
 X - argument, T(K) .LE. X .LE. T(N+1)
 INBV - an initialization parameter which must be set
 to 1 the first time BVALU is called.

 Output
 INBV - INBV contains information for efficient process-
 ing after the initial call and INBV must not
 be changed by the user. Distinct splines require
 distinct INBV parameters.
 WORK - work vector of length 3*K.
 BVALU - value of the IDERIV-th derivative at X

 Error Conditions
 An improper input is a fatal error

 ***REFERENCES Carl de Boor, Package for calculating with B-splines,
 SIAM Journal on Numerical Analysis 14, 3 (June 1977),
 pp. 441-472.

SLATEC2 (AAAAAA through D9UPAK) - 107

 ***ROUTINES CALLED INTRV, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800901 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 108

BVSUP

 SUBROUTINE BVSUP (Y, NROWY, NCOMP, XPTS, NXPTS, A, NROWA, ALPHA,
 NIC, B, NROWB, BETA, NFC, IGOFX, RE, AE, IFLAG, WORK, NDW,
 + IWORK, NDIW, NEQIVP)
 ***BEGIN PROLOGUE BVSUP
 ***PURPOSE Solve a linear two-point boundary value problem using
 superposition coupled with an orthonormalization procedure
 and a variable-step integration scheme.
 ***LIBRARY SLATEC
 ***CATEGORY I1B1
 ***TYPE SINGLE PRECISION (BVSUP-S, DBVSUP-D)
 ***KEYWORDS ORTHONORMALIZATION, SHOOTING,
 TWO-POINT BOUNDARY VALUE PROBLEM
 ***AUTHOR Scott, M. R., (SNLA)
 Watts, H. A., (SNLA)
 ***DESCRIPTION

 **
 Subroutine BVSUP solves a LINEAR two-point boundary-value problem
 of the form
 dY/dX = MATRIX(X,U)*Y(X) + G(X,U)
 A*Y(Xinitial) = ALPHA , B*Y(Xfinal) = BETA

 Coupled with the solution of the initial value problem

 dU/dX = F(X,U)
 U(Xinitial) = ETA

 **
 Abstract
 The method of solution uses superposition coupled with an
 orthonormalization procedure and a variable-step integration
 scheme. Each time the superposition solutions start to
 lose their numerical linear independence, the vectors are
 reorthonormalized before integration proceeds. The underlying
 principle of the algorithm is then to piece together the
 intermediate (orthogonalized) solutions, defined on the various
 subintervals, to obtain the desired solutions.

 **
 INPUT to BVSUP
 **

 NROWY = Actual row dimension of Y in calling program.
 NROWY must be .GE. NCOMP

 NCOMP = Number of components per solution vector.
 NCOMP is equal to number of original differential
 equations. NCOMP = NIC + NFC.

 XPTS = Desired output points for solution. They must be monotonic.
 Xinitial = XPTS(1)
 Xfinal = XPTS(NXPTS)

 NXPTS = Number of output points

 A(NROWA,NCOMP) = Boundary condition matrix at Xinitial,

SLATEC2 (AAAAAA through D9UPAK) - 109

 must be contained in (NIC,NCOMP) sub-matrix.

 NROWA = Actual row dimension of A in calling program,
 NROWA must be .GE. NIC.

 ALPHA(NIC+NEQIVP) = Boundary conditions at Xinitial.
 If NEQIVP .GT. 0 (see below), the boundary
 conditions at Xinitial for the initial value
 equations must be stored starting in
 position (NIC + 1) of ALPHA.
 Thus, ALPHA(NIC+K) = ETA(K).

 NIC = Number of boundary conditions at Xinitial.

 B(NROWB,NCOMP) = Boundary condition matrix at Xfinal,
 must be contained in (NFC,NCOMP) sub-matrix.

 NROWB = Actual row dimension of B in calling program,
 NROWB must be .GE. NFC.

 BETA(NFC) = Boundary conditions at Xfinal.

 NFC = Number of boundary conditions at Xfinal

 IGOFX =0 -- The inhomogeneous term G(X) is identically zero.
 =1 -- The inhomogeneous term G(X) is not identically zero.
 (if IGOFX=1, then subroutine GVEC (or UVEC) must be
 supplied).

 RE = Relative error tolerance used by the integrator
 (see one of the integrators)

 AE = Absolute error tolerance used by the integrator
 (see one of the integrators)
 **NOTE- RE and AE should not both be zero.

 IFLAG = A status parameter used principally for output.
 However, for efficient solution of problems which
 are originally defined as complex valued (but
 converted to real systems to use this code), the
 user must set IFLAG=13 on input. See the comment below
 for more information on solving such problems.

 WORK(NDW) = Floating point array used for internal storage.

 NDW = Actual dimension of WORK array allocated by user.
 An estimate for NDW can be computed from the following
 NDW = 130 + NCOMP**2 * (6 + NXPTS/2 + expected number of
 orthonormalizations/8)
 For the DISK or TAPE storage mode,
 NDW = 6 * NCOMP**2 + 10 * NCOMP + 130
 However, when the ADAMS integrator is to be used, the estimates are
 NDW = 130 + NCOMP**2 * (13 + NXPTS/2 + expected number of
 orthonormalizations/8)
 and NDW = 13 * NCOMP**2 + 22 * NCOMP + 130 , respectively.

 IWORK(NDIW) = Integer array used for internal storage.

 NDIW = Actual dimension of IWORK array allocated by user.
 An estimate for NDIW can be computed from the following

SLATEC2 (AAAAAA through D9UPAK) - 110

 NDIW = 68 + NCOMP * (1 + expected number of
 orthonormalizations)
 **NOTE -- The amount of storage required is problem dependent and may
 be difficult to predict in advance. Experience has shown
 that for most problems 20 or fewer orthonormalizations
 should suffice. If the problem cannot be completed with the
 allotted storage, then a message will be printed which
 estimates the amount of storage necessary. In any case, the
 user can examine the IWORK array for the actual storage
 requirements, as described in the output information below.

 NEQIVP = Number of auxiliary initial value equations being added
 to the boundary value problem.
 **NOTE -- Occasionally the coefficients MATRIX and/or G may be
 functions which depend on the independent variable X and
 on U, the solution of an auxiliary initial value problem.
 In order to avoid the difficulties associated with
 interpolation, the auxiliary equations may be solved
 simultaneously with the given boundary value problem.
 This initial value problem may be LINEAR or NONLINEAR.
 See SAND77-1328 for an example.

 The user must supply subroutines FMAT, GVEC, UIVP and UVEC, when
 needed (they MUST be so named), to evaluate the derivatives
 as follows

 A. FMAT must be supplied.

 SUBROUTINE FMAT(X,Y,YP)
 X = Independent variable (input to FMAT)
 Y = Dependent variable vector (input to FMAT)
 YP = dY/dX = Derivative vector (output from FMAT)

 Compute the derivatives for the HOMOGENEOUS problem
 YP(I) = dY(I)/dX = MATRIX(X) * Y(I) , I = 1,...,NCOMP

 When (NEQIVP .GT. 0) and MATRIX is dependent on U as
 well as on X, the following common statement must be
 included in FMAT
 COMMON /MLIVP/ NOFST
 For convenience, the U vector is stored at the bottom
 of the Y array. Thus, during any call to FMAT,
 U(I) is referenced by Y(NOFST + I).

 Subroutine BVDER calls FMAT NFC times to evaluate the
 homogeneous equations and, if necessary, it calls FMAT once
 in evaluating the particular solution. Since X remains
 unchanged in this sequence of calls it is possible to
 realize considerable computational savings for complicated
 and expensive evaluations of the MATRIX entries. To do this
 the user merely passes a variable, say XS, via COMMON where
 XS is defined in the main program to be any value except
 the initial X. Then the non-constant elements of MATRIX(X)
 appearing in the differential equations need only be
 computed if X is unequal to XS, whereupon XS is reset to X.

 B. If NEQIVP .GT. 0 , UIVP must also be supplied.

SLATEC2 (AAAAAA through D9UPAK) - 111

 SUBROUTINE UIVP(X,U,UP)
 X = Independent variable (input to UIVP)
 U = Dependent variable vector (input to UIVP)
 UP = dU/dX = Derivative vector (output from UIVP)

 Compute the derivatives for the auxiliary initial value eqs
 UP(I) = dU(I)/dX, I = 1,...,NEQIVP.

 Subroutine BVDER calls UIVP once to evaluate the
 derivatives for the auxiliary initial value equations.

 C. If NEQIVP = 0 and IGOFX = 1 , GVEC must be supplied.

 SUBROUTINE GVEC(X,G)
 X = Independent variable (input to GVEC)
 G = Vector of inhomogeneous terms G(X) (output from GVEC)

 Compute the inhomogeneous terms G(X)
 G(I) = G(X) values for I = 1,...,NCOMP.

 Subroutine BVDER calls GVEC in evaluating the particular
 solution provided G(X) is NOT identically zero. Thus, when
 IGOFX=0, the user need NOT write a GVEC subroutine. Also,
 the user does not have to bother with the computational
 savings scheme for GVEC as this is automatically achieved
 via the BVDER subroutine.

 D. If NEQIVP .GT. 0 and IGOFX = 1 , UVEC must be supplied.

 SUBROUTINE UVEC(X,U,G)
 X = Independent variable (input to UVEC)
 U = Dependent variable vector from the auxiliary initial
 value problem (input to UVEC)
 G = Array of inhomogeneous terms G(X,U)(output from UVEC)

 Compute the inhomogeneous terms G(X,U)
 G(I) = G(X,U) values for I = 1,...,NCOMP.

 Subroutine BVDER calls UVEC in evaluating the particular
 solution provided G(X,U) is NOT identically zero. Thus,
 when IGOFX=0, the user need NOT write a UVEC subroutine.

 The following is optional input to BVSUP to give the user more
 flexibility in use of the code. See SAND75-0198 , SAND77-1328 ,
 SAND77-1690,SAND78-0522, and SAND78-1501 for more information.

 ****CAUTION -- The user MUST zero out IWORK(1),...,IWORK(15)
 prior to calling BVSUP. These locations define optional
 input and MUST be zero UNLESS set to special values by
 the user as described below.

 IWORK(1) -- Number of orthonormalization points.
 A value need be set only if IWORK(11) = 1

 IWORK(9) -- Integrator and orthonormalization parameter

SLATEC2 (AAAAAA through D9UPAK) - 112

 (default value is 1)
 1 = RUNGE-KUTTA-FEHLBERG code using GRAM-SCHMIDT test.
 2 = ADAMS code using GRAM-SCHMIDT TEST.

 IWORK(11) -- Orthonormalization points parameter
 (default value is 0)
 0 - Orthonormalization points not pre-assigned.
 1 - Orthonormalization points pre-assigned in
 the first IWORK(1) positions of WORK.

 IWORK(12) -- Storage parameter
 (default value is 0)
 0 - All storage IN CORE
 LUN - Homogeneous and inhomogeneous solutions at
 output points and orthonormalization information
 are stored on DISK. The logical unit number to be
 used for DISK I/O (NTAPE) is set to IWORK(12).

 WORK(1),... -- Pre-assigned orthonormalization points, stored
 monotonically, corresponding to the direction
 of integration.

 *** COMPLEX VALUED PROBLEM ***

 NOTE*
 Suppose the original boundary value problem is NC equations
 of the form
 dW/dX = MAT(X,U)*W(X) + H(X,U)
 R*W(Xinitial)=GAMMA , S*W(Xfinal)=DELTA

 where all variables are complex valued. The BVSUP code can be
 used by converting to a real system of size 2*NC. To solve the
 larger dimensioned problem efficiently, the user must initialize
 IFLAG=13 on input and order the vector components according to
 Y(1)=real(W(1)),...,Y(NC)=real(W(NC)),Y(NC+1)=imag(W(1)),....,
 Y(2*NC)=imag(W(NC)). Then define

 . real(MAT) -imag(MAT) .
 MATRIX = . .
 . imag(MAT) real(MAT) .

 The matrices A,B and vectors G,ALPHA,BETA must be defined
 similarly. Further details can be found in SAND78-1501.

 **
 OUTPUT from BVSUP
 **

 Y(NROWY,NXPTS) = Solution at specified output points.

 IFLAG output values
 =-5 Algorithm ,for obtaining starting vectors for the
 special complex problem structure, was unable to obtain
 the initial vectors satisfying the necessary
 independence criteria.

SLATEC2 (AAAAAA through D9UPAK) - 113

 =-4 Rank of boundary condition matrix A is less than NIC,
 as determined by LSSUDS.
 =-2 Invalid input parameters.
 =-1 Insufficient number of storage locations allocated for
 WORK or IWORK.

 =0 Indicates successful solution

 =1 A computed solution is returned but UNIQUENESS of the
 solution of the boundary-value problem is questionable.
 For an eigenvalue problem, this should be treated as a
 successful execution since this is the expected mode
 of return.
 =2 A computed solution is returned but the EXISTENCE of the
 solution to the boundary-value problem is questionable.
 =3 A nontrivial solution approximation is returned although
 the boundary condition matrix B*Y(Xfinal) is found to be
 nonsingular (to the desired accuracy level) while the
 right hand side vector is zero. To eliminate this type
 of return, the accuracy of the eigenvalue parameter
 must be improved.
 ***NOTE- We attempt to diagnose the correct problem behavior
 and report possible difficulties by the appropriate
 error flag. However, the user should probably resolve
 the problem using smaller error tolerances and/or
 perturbations in the boundary conditions or other
 parameters. This will often reveal the correct
 interpretation for the problem posed.

 =13 Maximum number of orthonormalizations attained before
 reaching Xfinal.
 =20-flag from integrator (DERKF or DEABM) values can range
 from 21 to 25.
 =30 Solution vectors form a dependent set.

 WORK(1),...,WORK(IWORK(1)) = Orthonormalization points
 determined by BVPOR.

 IWORK(1) = Number of orthonormalizations performed by BVPOR.

 IWORK(2) = Maximum number of orthonormalizations allowed as
 calculated from storage allocated by user.

 IWORK(3),IWORK(4),IWORK(5),IWORK(6) Give information about
 actual storage requirements for WORK and IWORK
 arrays. In particular,
 required storage for WORK array is
 IWORK(3) + IWORK(4)*(expected number of orthonormalizations)

 required storage for IWORK array is
 IWORK(5) + IWORK(6)*(expected number of orthonormalizations)

 IWORK(8) = Final value of exponent parameter used in tolerance
 test for orthonormalization.

 IWORK(16) = Number of independent vectors returned from MGSBV.
 It is only of interest when IFLAG=30 is obtained.

 IWORK(17) = Numerically estimated rank of the boundary
 condition matrix defined from B*Y(Xfinal)

SLATEC2 (AAAAAA through D9UPAK) - 114

 **

 Necessary machine constants are defined in the function
 routine R1MACH. The user must make sure that the values
 set in R1MACH are relevant to the computer being used.

 **

 ***REFERENCES M. R. Scott and H. A. Watts, SUPORT - a computer code
 for two-point boundary-value problems via
 orthonormalization, SIAM Journal of Numerical
 Analysis 14, (1977), pp. 40-70.
 B. L. Darlow, M. R. Scott and H. A. Watts, Modifications
 of SUPORT, a linear boundary value problem solver
 Part I - pre-assigning orthonormalization points,
 auxiliary initial value problem, disk or tape storage,
 Report SAND77-1328, Sandia Laboratories, Albuquerque,
 New Mexico, 1977.
 B. L. Darlow, M. R. Scott and H. A. Watts, Modifications
 of SUPORT, a linear boundary value problem solver
 Part II - inclusion of an Adams integrator, Report
 SAND77-1690, Sandia Laboratories, Albuquerque,
 New Mexico, 1977.
 M. E. Lord and H. A. Watts, Modifications of SUPORT,
 a linear boundary value problem solver Part III -
 orthonormalization improvements, Report SAND78-0522,
 Sandia Laboratories, Albuquerque, New Mexico, 1978.
 H. A. Watts, M. R. Scott and M. E. Lord, Computational
 solution of complex*16 valued boundary problems,
 Report SAND78-1501, Sandia Laboratories,
 Albuquerque, New Mexico, 1978.
 ***ROUTINES CALLED EXBVP, MACON, XERMSG
 ***COMMON BLOCKS ML15TO, ML17BW, ML18JR, ML5MCO, ML8SZ
 ***REVISION HISTORY (YYMMDD)
 750601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890921 Realigned order of variables in certain COMMON blocks.
 (WRB)
 890921 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900510 Convert XERRWV calls to XERMSG calls. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 115

C0LGMC

 COMPLEX FUNCTION C0LGMC (Z)
 ***BEGIN PROLOGUE C0LGMC
 ***PURPOSE Evaluate (Z+0.5)*LOG((Z+1.)/Z) - 1.0 with relative
 accuracy.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C7A
 ***TYPE COMPLEX (C0LGMC-C)
 ***KEYWORDS FNLIB, GAMMA FUNCTION, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 Evaluate (Z+0.5)*LOG((Z+1.0)/Z) - 1.0 with relative error accuracy
 Let Q = 1.0/Z so that
 (Z+0.5)*LOG(1+1/Z) - 1 = (Z+0.5)*(LOG(1+Q) - Q + Q*Q/2) - Q*Q/4
 = (Z+0.5)*Q**3*C9LN2R(Q) - Q**2/4,
 where C9LN2R is (LOG(1+Q) - Q + 0.5*Q**2) / Q**3.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED C9LN2R, R1MACH
 ***REVISION HISTORY (YYMMDD)
 780401 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 116

CACOS

 COMPLEX FUNCTION CACOS (Z)
 ***BEGIN PROLOGUE CACOS
 ***PURPOSE Compute the complex arc cosine.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C4A
 ***TYPE COMPLEX (CACOS-C)
 ***KEYWORDS ARC COSINE, ELEMENTARY FUNCTIONS, FNLIB, TRIGONOMETRIC
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 CACOS(Z) calculates the complex trigonometric arc cosine of Z.
 The result is in units of radians, and the real part is in the
 first or second quadrant.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED CASIN
 ***REVISION HISTORY (YYMMDD)
 770401 DATE WRITTEN
 861211 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 117

CACOSH

 COMPLEX FUNCTION CACOSH (Z)
 ***BEGIN PROLOGUE CACOSH
 ***PURPOSE Compute the arc hyperbolic cosine.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C4C
 ***TYPE COMPLEX (ACOSH-S, DACOSH-D, CACOSH-C)
 ***KEYWORDS ACOSH, ARC HYPERBOLIC COSINE, ELEMENTARY FUNCTIONS, FNLIB,
 INVERSE HYPERBOLIC COSINE
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 CACOSH(Z) calculates the complex arc hyperbolic cosine of Z.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED CACOS
 ***REVISION HISTORY (YYMMDD)
 770401 DATE WRITTEN
 861211 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 118

CAIRY

 SUBROUTINE CAIRY (Z, ID, KODE, AI, NZ, IERR)
 ***BEGIN PROLOGUE CAIRY
 ***PURPOSE Compute the Airy function Ai(z) or its derivative dAi/dz
 for complex argument z. A scaling option is available
 to help avoid underflow and overflow.
 ***LIBRARY SLATEC
 ***CATEGORY C10D
 ***TYPE COMPLEX (CAIRY-C, ZAIRY-C)
 ***KEYWORDS AIRY FUNCTION, BESSEL FUNCTION OF ORDER ONE THIRD,
 BESSEL FUNCTION OF ORDER TWO THIRDS
 ***AUTHOR Amos, D. E., (SNL)
 ***DESCRIPTION

 On KODE=1, CAIRY computes the complex Airy function Ai(z)
 or its derivative dAi/dz on ID=0 or ID=1 respectively. On
 KODE=2, a scaling option exp(zeta)*Ai(z) or exp(zeta)*dAi/dz
 is provided to remove the exponential decay in -pi/3<arg(z)
 <pi/3 and the exponential growth in pi/3<abs(arg(z))<pi where
 zeta=(2/3)*z**(3/2).

 While the Airy functions Ai(z) and dAi/dz are analytic in
 the whole z-plane, the corresponding scaled functions defined
 for KODE=2 have a cut along the negative real axis.

 Input
 Z - Argument of type COMPLEX
 ID - Order of derivative, ID=0 or ID=1
 KODE - A parameter to indicate the scaling option
 KODE=1 returns
 AI=Ai(z) on ID=0
 AI=dAi/dz on ID=1
 at z=Z
 =2 returns
 AI=exp(zeta)*Ai(z) on ID=0
 AI=exp(zeta)*dAi/dz on ID=1
 at z=Z where zeta=(2/3)*z**(3/2)

 Output
 AI - Result of type COMPLEX
 NZ - Underflow indicator
 NZ=0 Normal return
 NZ=1 AI=0 due to underflow in
 -pi/3<arg(Z)<pi/3 on KODE=1
 IERR - Error flag
 IERR=0 Normal return - COMPUTATION COMPLETED
 IERR=1 Input error - NO COMPUTATION
 IERR=2 Overflow - NO COMPUTATION
 (Re(Z) too large with KODE=1)
 IERR=3 Precision warning - COMPUTATION COMPLETED
 (Result has less than half precision)
 IERR=4 Precision error - NO COMPUTATION
 (Result has no precision)
 IERR=5 Algorithmic error - NO COMPUTATION
 (Termination condition not met)

 *Long Description:

SLATEC2 (AAAAAA through D9UPAK) - 119

 Ai(z) and dAi/dz are computed from K Bessel functions by

 Ai(z) = c*sqrt(z)*K(1/3,zeta)
 dAi/dz = -c* z *K(2/3,zeta)
 c = 1/(pi*sqrt(3))
 zeta = (2/3)*z**(3/2)

 when abs(z)>1 and from power series when abs(z)<=1.

 In most complex variable computation, one must evaluate ele-
 mentary functions. When the magnitude of Z is large, losses
 of significance by argument reduction occur. Consequently, if
 the magnitude of ZETA=(2/3)*Z**(3/2) exceeds U1=SQRT(0.5/UR),
 then losses exceeding half precision are likely and an error
 flag IERR=3 is triggered where UR=R1MACH(4)=UNIT ROUNDOFF.
 Also, if the magnitude of ZETA is larger than U2=0.5/UR, then
 all significance is lost and IERR=4. In order to use the INT
 function, ZETA must be further restricted not to exceed
 U3=I1MACH(9)=LARGEST INTEGER. Thus, the magnitude of ZETA
 must be restricted by MIN(U2,U3). In IEEE arithmetic, U1,U2,
 and U3 are approximately 2.0E+3, 4.2E+6, 2.1E+9 in single
 precision and 4.7E+7, 2.3E+15, 2.1E+9 in double precision.
 This makes U2 limiting is single precision and U3 limiting
 in double precision. This means that the magnitude of Z
 cannot exceed approximately 3.4E+4 in single precision and
 2.1E+6 in double precision. This also means that one can
 expect to retain, in the worst cases on 32-bit machines,
 no digits in single precision and only 6 digits in double
 precision.

 The approximate relative error in the magnitude of a complex
 Bessel function can be expressed as P*10**S where P=MAX(UNIT
 ROUNDOFF,1.0E-18) is the nominal precision and 10**S repre-
 sents the increase in error due to argument reduction in the
 elementary functions. Here, S=MAX(1,ABS(LOG10(ABS(Z))),
 ABS(LOG10(FNU))) approximately (i.e., S=MAX(1,ABS(EXPONENT OF
 ABS(Z),ABS(EXPONENT OF FNU))). However, the phase angle may
 have only absolute accuracy. This is most likely to occur
 when one component (in magnitude) is larger than the other by
 several orders of magnitude. If one component is 10**K larger
 than the other, then one can expect only MAX(ABS(LOG10(P))-K,
 0) significant digits; or, stated another way, when K exceeds
 the exponent of P, no significant digits remain in the smaller
 component. However, the phase angle retains absolute accuracy
 because, in complex arithmetic with precision P, the smaller
 component will not (as a rule) decrease below P times the
 magnitude of the larger component. In these extreme cases,
 the principal phase angle is on the order of +P, -P, PI/2-P,
 or -PI/2+P.

 ***REFERENCES 1. M. Abramowitz and I. A. Stegun, Handbook of Mathe-
 matical Functions, National Bureau of Standards
 Applied Mathematics Series 55, U. S. Department
 of Commerce, Tenth Printing (1972) or later.
 2. D. E. Amos, Computation of Bessel Functions of
 Complex Argument and Large Order, Report SAND83-0643,
 Sandia National Laboratories, Albuquerque, NM, May
 1983.
 3. D. E. Amos, A Subroutine Package for Bessel Functions

SLATEC2 (AAAAAA through D9UPAK) - 120

 of a Complex Argument and Nonnegative Order, Report
 SAND85-1018, Sandia National Laboratory, Albuquerque,
 NM, May 1985.
 4. D. E. Amos, A portable package for Bessel functions
 of a complex argument and nonnegative order, ACM
 Transactions on Mathematical Software, 12 (September
 1986), pp. 265-273.

 ***ROUTINES CALLED CACAI, CBKNU, I1MACH, R1MACH
 ***REVISION HISTORY (YYMMDD)
 830501 DATE WRITTEN
 890801 REVISION DATE from Version 3.2
 910415 Prologue converted to Version 4.0 format. (BAB)
 920128 Category corrected. (WRB)
 920811 Prologue revised. (DWL)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 121

CARG

 FUNCTION CARG (Z)
 ***BEGIN PROLOGUE CARG
 ***PURPOSE Compute the argument of a complex number.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY A4A
 ***TYPE COMPLEX (CARG-C)
 ***KEYWORDS ARGUMENT OF A COMPLEX NUMBER, ELEMENTARY FUNCTIONS, FNLIB
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 CARG(Z) calculates the argument of the complex number Z. Note
 that CARG returns a real result. If Z = X+iY, then CARG is ATAN(Y/X),
 except when both X and Y are zero, in which case the result
 will be zero.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 770401 DATE WRITTEN
 861211 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 122

CASIN

 COMPLEX FUNCTION CASIN (ZINP)
 ***BEGIN PROLOGUE CASIN
 ***PURPOSE Compute the complex arc sine.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C4A
 ***TYPE COMPLEX (CASIN-C)
 ***KEYWORDS ARC SINE, ELEMENTARY FUNCTIONS, FNLIB, TRIGONOMETRIC
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 CASIN(ZINP) calculates the complex trigonometric arc sine of ZINP.
 The result is in units of radians, and the real part is in the first
 or fourth quadrant.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED R1MACH
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 123

CASINH

 COMPLEX FUNCTION CASINH (Z)
 ***BEGIN PROLOGUE CASINH
 ***PURPOSE Compute the arc hyperbolic sine.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C4C
 ***TYPE COMPLEX (ASINH-S, DASINH-D, CASINH-C)
 ***KEYWORDS ARC HYPERBOLIC SINE, ASINH, ELEMENTARY FUNCTIONS, FNLIB,
 INVERSE HYPERBOLIC SINE
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 CASINH(Z) calculates the complex arc hyperbolic sine of Z.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED CASIN
 ***REVISION HISTORY (YYMMDD)
 770401 DATE WRITTEN
 861211 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 124

CATAN

 COMPLEX FUNCTION CATAN (Z)
 ***BEGIN PROLOGUE CATAN
 ***PURPOSE Compute the complex arc tangent.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C4A
 ***TYPE COMPLEX (CATAN-C)
 ***KEYWORDS ARC TANGENT, ELEMENTARY FUNCTIONS, FNLIB, TRIGONOMETRIC
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 CATAN(Z) calculates the complex trigonometric arc tangent of Z.
 The result is in units of radians, and the real part is in the first
 or fourth quadrant.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770801 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 125

CATAN2

 COMPLEX FUNCTION CATAN2 (CSN, CCS)
 ***BEGIN PROLOGUE CATAN2
 ***PURPOSE Compute the complex arc tangent in the proper quadrant.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C4A
 ***TYPE COMPLEX (CATAN2-C)
 ***KEYWORDS ARC TANGENT, ELEMENTARY FUNCTIONS, FNLIB, POLAR ANGEL,
 QUADRANT, TRIGONOMETRIC
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 CATAN2(CSN,CCS) calculates the complex trigonometric arc
 tangent of the ratio CSN/CCS and returns a result whose real
 part is in the correct quadrant (within a multiple of 2*PI). The
 result is in units of radians and the real part is between -PI
 and +PI.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED CATAN, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770401 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 126

CATANH

 COMPLEX FUNCTION CATANH (Z)
 ***BEGIN PROLOGUE CATANH
 ***PURPOSE Compute the arc hyperbolic tangent.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C4C
 ***TYPE COMPLEX (ATANH-S, DATANH-D, CATANH-C)
 ***KEYWORDS ARC HYPERBOLIC TANGENT, ATANH, ELEMENTARY FUNCTIONS,
 FNLIB, INVERSE HYPERBOLIC TANGENT
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 CATANH(Z) calculates the complex arc hyperbolic tangent of Z.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED CATAN
 ***REVISION HISTORY (YYMMDD)
 770401 DATE WRITTEN
 861211 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 127

CAXPY

 SUBROUTINE CAXPY (N, CA, CX, INCX, CY, INCY)
 ***BEGIN PROLOGUE CAXPY
 ***PURPOSE Compute a constant times a vector plus a vector.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1A7
 ***TYPE COMPLEX (SAXPY-S, DAXPY-D, CAXPY-C)
 ***KEYWORDS BLAS, LINEAR ALGEBRA, TRIAD, VECTOR
 ***AUTHOR Lawson, C. L., (JPL)
 Hanson, R. J., (SNLA)
 Kincaid, D. R., (U. of Texas)
 Krogh, F. T., (JPL)
 ***DESCRIPTION

 B L A S Subprogram
 Description of Parameters

 --Input--
 N number of elements in input vector(s)
 CA complex scalar multiplier
 CX complex vector with N elements
 INCX storage spacing between elements of CX
 CY complex vector with N elements
 INCY storage spacing between elements of CY

 --Output--
 CY complex result (unchanged if N .LE. 0)

 Overwrite complex CY with complex CA*CX + CY.
 For I = 0 to N-1, replace CY(LY+I*INCY) with CA*CX(LX+I*INCX) +
 CY(LY+I*INCY),
 where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is
 defined in a similar way using INCY.

 ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
 Krogh, Basic linear algebra subprograms for Fortran
 usage, Algorithm No. 539, Transactions on Mathematical
 Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 791001 DATE WRITTEN
 861211 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920310 Corrected definition of LX in DESCRIPTION. (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 920801 Removed variable CANORM. (RWC, WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 128

CBABK2

 SUBROUTINE CBABK2 (NM, N, LOW, IGH, SCALE, M, ZR, ZI)
 ***BEGIN PROLOGUE CBABK2
 ***PURPOSE Form the eigenvectors of a complex general matrix from the
 eigenvectors of matrix output from CBAL.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4C4
 ***TYPE COMPLEX (BALBAK-S, CBABK2-C)
 ***KEYWORDS EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of the ALGOL procedure
 CBABK2, which is a complex version of BALBAK,
 NUM. MATH. 13, 293-304(1969) by Parlett and Reinsch.
 HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 315-326(1971).

 This subroutine forms the eigenvectors of a COMPLEX GENERAL
 matrix by back transforming those of the corresponding
 balanced matrix determined by CBAL.

 On INPUT

 NM must be set to the row dimension of the two-dimensional
 array parameters, ZR and ZI, as declared in the calling
 program dimension statement. NM is an INTEGER variable.

 N is the order of the matrix Z=(ZR,ZI). N is an INTEGER
 variable. N must be less than or equal to NM.

 LOW and IGH are INTEGER variables determined by CBAL.

 SCALE contains information determining the permutations and
 scaling factors used by CBAL. SCALE is a one-dimensional
 REAL array, dimensioned SCALE(N).

 M is the number of eigenvectors to be back transformed.
 M is an INTEGER variable.

 ZR and ZI contain the real and imaginary parts, respectively,
 of the eigenvectors to be back transformed in their first
 M columns. ZR and ZI are two-dimensional REAL arrays,
 dimensioned ZR(NM,M) and ZI(NM,M).

 On OUTPUT

 ZR and ZI contain the real and imaginary parts,
 respectively, of the transformed eigenvectors
 in their first M columns.

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,

SLATEC2 (AAAAAA through D9UPAK) - 129

 1976.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 130

CBAL

 SUBROUTINE CBAL (NM, N, AR, AI, LOW, IGH, SCALE)
 ***BEGIN PROLOGUE CBAL
 ***PURPOSE Balance a complex general matrix and isolate eigenvalues
 whenever possible.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4C1A
 ***TYPE COMPLEX (BALANC-S, CBAL-C)
 ***KEYWORDS EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of the ALGOL procedure
 CBALANCE, which is a complex version of BALANCE,
 NUM. MATH. 13, 293-304(1969) by Parlett and Reinsch.
 HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 315-326(1971).

 This subroutine balances a COMPLEX matrix and isolates
 eigenvalues whenever possible.

 On INPUT

 NM must be set to the row dimension of the two-dimensional
 array parameters, AR and AI, as declared in the calling
 program dimension statement. NM is an INTEGER variable.

 N is the order of the matrix A=(AR,AI). N is an INTEGER
 variable. N must be less than or equal to NM.

 AR and AI contain the real and imaginary parts,
 respectively, of the complex matrix to be balanced.
 AR and AI are two-dimensional REAL arrays, dimensioned
 AR(NM,N) and AI(NM,N).

 On OUTPUT

 AR and AI contain the real and imaginary parts,
 respectively, of the balanced matrix.

 LOW and IGH are two INTEGER variables such that AR(I,J)
 and AI(I,J) are equal to zero if
 (1) I is greater than J and
 (2) J=1,...,LOW-1 or I=IGH+1,...,N.

 SCALE contains information determining the permutations and
 scaling factors used. SCALE is a one-dimensional REAL array,
 dimensioned SCALE(N).

 Suppose that the principal submatrix in rows LOW through IGH
 has been balanced, that P(J) denotes the index interchanged
 with J during the permutation step, and that the elements
 of the diagonal matrix used are denoted by D(I,J). Then
 SCALE(J) = P(J), for J = 1,...,LOW-1
 = D(J,J) J = LOW,...,IGH
 = P(J) J = IGH+1,...,N.
 The order in which the interchanges are made is N to IGH+1,
 then 1 to LOW-1.

SLATEC2 (AAAAAA through D9UPAK) - 131

 Note that 1 is returned for IGH if IGH is zero formally.

 The ALGOL procedure EXC contained in CBALANCE appears in
 CBAL in line. (Note that the ALGOL roles of identifiers
 K,L have been reversed.)

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 132

CBESH

 SUBROUTINE CBESH (Z, FNU, KODE, M, N, CY, NZ, IERR)
 ***BEGIN PROLOGUE CBESH
 ***PURPOSE Compute a sequence of the Hankel functions H(m,a,z)
 for superscript m=1 or 2, real nonnegative orders a=b,
 b+1,... where b>0, and nonzero complex argument z. A
 scaling option is available to help avoid overflow.
 ***LIBRARY SLATEC
 ***CATEGORY C10A4
 ***TYPE COMPLEX (CBESH-C, ZBESH-C)
 ***KEYWORDS BESSEL FUNCTIONS OF COMPLEX ARGUMENT,
 BESSEL FUNCTIONS OF THE THIRD KIND, H BESSEL FUNCTIONS,
 HANKEL FUNCTIONS
 ***AUTHOR Amos, D. E., (SNL)
 ***DESCRIPTION

 On KODE=1, CBESH computes an N member sequence of complex
 Hankel (Bessel) functions CY(L)=H(M,FNU+L-1,Z) for super-
 script M=1 or 2, real nonnegative orders FNU+L-1, L=1,...,
 N, and complex nonzero Z in the cut plane -pi<arg(Z)<=pi.
 On KODE=2, CBESH returns the scaled functions

 CY(L) = H(M,FNU+L-1,Z)*exp(-(3-2*M)*Z*i), i**2=-1

 which removes the exponential behavior in both the upper
 and lower half planes. Definitions and notation are found
 in the NBS Handbook of Mathematical Functions (Ref. 1).

 Input
 Z - Nonzero argument of type COMPLEX
 FNU - Initial order of type REAL, FNU>=0
 KODE - A parameter to indicate the scaling option
 KODE=1 returns
 CY(L)=H(M,FNU+L-1,Z), L=1,...,N
 =2 returns
 CY(L)=H(M,FNU+L-1,Z)*exp(-(3-2M)*Z*i),
 L=1,...,N
 M - Superscript of Hankel function, M=1 or 2
 N - Number of terms in the sequence, N>=1

 Output
 CY - Result vector of type COMPLEX
 NZ - Number of underflows set to zero
 NZ=0 Normal return
 NZ>0 CY(L)=0 for NZ values of L (if M=1 and
 Im(Z)>0 or if M=2 and Im(Z)<0, then
 CY(L)=0 for L=1,...,NZ; in the com-
 plementary half planes, the underflows
 may not be in an uninterrupted sequence)
 IERR - Error flag
 IERR=0 Normal return - COMPUTATION COMPLETED
 IERR=1 Input error - NO COMPUTATION
 IERR=2 Overflow - NO COMPUTATION
 (abs(Z) too small and/or FNU+N-1
 too large)
 IERR=3 Precision warning - COMPUTATION COMPLETED
 (Result has half precision or less

SLATEC2 (AAAAAA through D9UPAK) - 133

 because abs(Z) or FNU+N-1 is large)
 IERR=4 Precision error - NO COMPUTATION
 (Result has no precision because
 abs(Z) or FNU+N-1 is too large)
 IERR=5 Algorithmic error - NO COMPUTATION
 (Termination condition not met)

 *Long Description:

 The computation is carried out by the formula

 H(m,a,z) = (1/t)*exp(-a*t)*K(a,z*exp(-t))
 t = (3-2*m)*i*pi/2

 where the K Bessel function is computed as described in the
 prologue to CBESK.

 Exponential decay of H(m,a,z) occurs in the upper half z
 plane for m=1 and the lower half z plane for m=2. Exponential
 growth occurs in the complementary half planes. Scaling
 by exp(-(3-2*m)*z*i) removes the exponential behavior in the
 whole z plane as z goes to infinity.

 For negative orders, the formula

 H(m,-a,z) = H(m,a,z)*exp((3-2*m)*a*pi*i)

 can be used.

 In most complex variable computation, one must evaluate ele-
 mentary functions. When the magnitude of Z or FNU+N-1 is
 large, losses of significance by argument reduction occur.
 Consequently, if either one exceeds U1=SQRT(0.5/UR), then
 losses exceeding half precision are likely and an error flag
 IERR=3 is triggered where UR=R1MACH(4)=UNIT ROUNDOFF. Also,
 if either is larger than U2=0.5/UR, then all significance is
 lost and IERR=4. In order to use the INT function, arguments
 must be further restricted not to exceed the largest machine
 integer, U3=I1MACH(9). Thus, the magnitude of Z and FNU+N-1
 is restricted by MIN(U2,U3). In IEEE arithmetic, U1,U2, and
 U3 approximate 2.0E+3, 4.2E+6, 2.1E+9 in single precision
 and 4.7E+7, 2.3E+15 and 2.1E+9 in double precision. This
 makes U2 limiting in single precision and U3 limiting in
 double precision. This means that one can expect to retain,
 in the worst cases on IEEE machines, no digits in single pre-
 cision and only 6 digits in double precision. Similar con-
 siderations hold for other machines.

 The approximate relative error in the magnitude of a complex
 Bessel function can be expressed as P*10**S where P=MAX(UNIT
 ROUNDOFF,1.0E-18) is the nominal precision and 10**S repre-
 sents the increase in error due to argument reduction in the
 elementary functions. Here, S=MAX(1,ABS(LOG10(ABS(Z))),
 ABS(LOG10(FNU))) approximately (i.e., S=MAX(1,ABS(EXPONENT OF
 ABS(Z),ABS(EXPONENT OF FNU))). However, the phase angle may
 have only absolute accuracy. This is most likely to occur
 when one component (in magnitude) is larger than the other by
 several orders of magnitude. If one component is 10**K larger
 than the other, then one can expect only MAX(ABS(LOG10(P))-K,
 0) significant digits; or, stated another way, when K exceeds

SLATEC2 (AAAAAA through D9UPAK) - 134

 the exponent of P, no significant digits remain in the smaller
 component. However, the phase angle retains absolute accuracy
 because, in complex arithmetic with precision P, the smaller
 component will not (as a rule) decrease below P times the
 magnitude of the larger component. In these extreme cases,
 the principal phase angle is on the order of +P, -P, PI/2-P,
 or -PI/2+P.

 ***REFERENCES 1. M. Abramowitz and I. A. Stegun, Handbook of Mathe-
 matical Functions, National Bureau of Standards
 Applied Mathematics Series 55, U. S. Department
 of Commerce, Tenth Printing (1972) or later.
 2. D. E. Amos, Computation of Bessel Functions of
 Complex Argument, Report SAND83-0086, Sandia National
 Laboratories, Albuquerque, NM, May 1983.
 3. D. E. Amos, Computation of Bessel Functions of
 Complex Argument and Large Order, Report SAND83-0643,
 Sandia National Laboratories, Albuquerque, NM, May
 1983.
 4. D. E. Amos, A Subroutine Package for Bessel Functions
 of a Complex Argument and Nonnegative Order, Report
 SAND85-1018, Sandia National Laboratory, Albuquerque,
 NM, May 1985.
 5. D. E. Amos, A portable package for Bessel functions
 of a complex argument and nonnegative order, ACM
 Transactions on Mathematical Software, 12 (September
 1986), pp. 265-273.

 ***ROUTINES CALLED CACON, CBKNU, CBUNK, CUOIK, I1MACH, R1MACH
 ***REVISION HISTORY (YYMMDD)
 830501 DATE WRITTEN
 890801 REVISION DATE from Version 3.2
 910415 Prologue converted to Version 4.0 format. (BAB)
 920128 Category corrected. (WRB)
 920811 Prologue revised. (DWL)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 135

CBESI

 SUBROUTINE CBESI (Z, FNU, KODE, N, CY, NZ, IERR)
 ***BEGIN PROLOGUE CBESI
 ***PURPOSE Compute a sequence of the Bessel functions I(a,z) for
 complex argument z and real nonnegative orders a=b,b+1,
 b+2,... where b>0. A scaling option is available to
 help avoid overflow.
 ***LIBRARY SLATEC
 ***CATEGORY C10B4
 ***TYPE COMPLEX (CBESI-C, ZBESI-C)
 ***KEYWORDS BESSEL FUNCTIONS OF COMPLEX ARGUMENT, I BESSEL FUNCTIONS,
 MODIFIED BESSEL FUNCTIONS
 ***AUTHOR Amos, D. E., (SNL)
 ***DESCRIPTION

 On KODE=1, CBESI computes an N-member sequence of complex
 Bessel functions CY(L)=I(FNU+L-1,Z) for real nonnegative
 orders FNU+L-1, L=1,...,N and complex Z in the cut plane
 -pi<arg(Z)<=pi. On KODE=2, CBESI returns the scaled functions

 CY(L) = exp(-abs(X))*I(FNU+L-1,Z), L=1,...,N and X=Re(Z)

 which removes the exponential growth in both the left and
 right half-planes as Z goes to infinity.

 Input
 Z - Argument of type COMPLEX
 FNU - Initial order of type REAL, FNU>=0
 KODE - A parameter to indicate the scaling option
 KODE=1 returns
 CY(L)=I(FNU+L-1,Z), L=1,...,N
 =2 returns
 CY(L)=exp(-abs(X))*I(FNU+L-1,Z), L=1,...,N
 where X=Re(Z)
 N - Number of terms in the sequence, N>=1

 Output
 CY - Result vector of type COMPLEX
 NZ - Number of underflows set to zero
 NZ=0 Normal return
 NZ>0 CY(L)=0, L=N-NZ+1,...,N
 IERR - Error flag
 IERR=0 Normal return - COMPUTATION COMPLETED
 IERR=1 Input error - NO COMPUTATION
 IERR=2 Overflow - NO COMPUTATION
 (Re(Z) too large on KODE=1)
 IERR=3 Precision warning - COMPUTATION COMPLETED
 (Result has half precision or less
 because abs(Z) or FNU+N-1 is large)
 IERR=4 Precision error - NO COMPUTATION
 (Result has no precision because
 abs(Z) or FNU+N-1 is too large)
 IERR=5 Algorithmic error - NO COMPUTATION
 (Termination condition not met)

 *Long Description:

SLATEC2 (AAAAAA through D9UPAK) - 136

 The computation of I(a,z) is carried out by the power series
 for small abs(z), the asymptotic expansion for large abs(z),
 the Miller algorithm normalized by the Wronskian and a
 Neumann series for intermediate magnitudes of z, and the
 uniform asymptotic expansions for I(a,z) and J(a,z) for
 large orders a. Backward recurrence is used to generate
 sequences or reduce orders when necessary.

 The calculations above are done in the right half plane and
 continued into the left half plane by the formula

 I(a,z*exp(t)) = exp(t*a)*I(a,z), Re(z)>0
 t = i*pi or -i*pi

 For negative orders, the formula

 I(-a,z) = I(a,z) + (2/pi)*sin(pi*a)*K(a,z)

 can be used. However, for large orders close to integers the
 the function changes radically. When a is a large positive
 integer, the magnitude of I(-a,z)=I(a,z) is a large
 negative power of ten. But when a is not an integer,
 K(a,z) dominates in magnitude with a large positive power of
 ten and the most that the second term can be reduced is by
 unit roundoff from the coefficient. Thus, wide changes can
 occur within unit roundoff of a large integer for a. Here,
 large means a>abs(z).

 In most complex variable computation, one must evaluate ele-
 mentary functions. When the magnitude of Z or FNU+N-1 is
 large, losses of significance by argument reduction occur.
 Consequently, if either one exceeds U1=SQRT(0.5/UR), then
 losses exceeding half precision are likely and an error flag
 IERR=3 is triggered where UR=R1MACH(4)=UNIT ROUNDOFF. Also,
 if either is larger than U2=0.5/UR, then all significance is
 lost and IERR=4. In order to use the INT function, arguments
 must be further restricted not to exceed the largest machine
 integer, U3=I1MACH(9). Thus, the magnitude of Z and FNU+N-1
 is restricted by MIN(U2,U3). In IEEE arithmetic, U1,U2, and
 U3 approximate 2.0E+3, 4.2E+6, 2.1E+9 in single precision
 and 4.7E+7, 2.3E+15 and 2.1E+9 in double precision. This
 makes U2 limiting in single precision and U3 limiting in
 double precision. This means that one can expect to retain,
 in the worst cases on IEEE machines, no digits in single pre-
 cision and only 6 digits in double precision. Similar con-
 siderations hold for other machines.

 The approximate relative error in the magnitude of a complex
 Bessel function can be expressed as P*10**S where P=MAX(UNIT
 ROUNDOFF,1.0E-18) is the nominal precision and 10**S repre-
 sents the increase in error due to argument reduction in the
 elementary functions. Here, S=MAX(1,ABS(LOG10(ABS(Z))),
 ABS(LOG10(FNU))) approximately (i.e., S=MAX(1,ABS(EXPONENT OF
 ABS(Z),ABS(EXPONENT OF FNU))). However, the phase angle may
 have only absolute accuracy. This is most likely to occur
 when one component (in magnitude) is larger than the other by
 several orders of magnitude. If one component is 10**K larger
 than the other, then one can expect only MAX(ABS(LOG10(P))-K,
 0) significant digits; or, stated another way, when K exceeds
 the exponent of P, no significant digits remain in the smaller

SLATEC2 (AAAAAA through D9UPAK) - 137

 component. However, the phase angle retains absolute accuracy
 because, in complex arithmetic with precision P, the smaller
 component will not (as a rule) decrease below P times the
 magnitude of the larger component. In these extreme cases,
 the principal phase angle is on the order of +P, -P, PI/2-P,
 or -PI/2+P.

 ***REFERENCES 1. M. Abramowitz and I. A. Stegun, Handbook of Mathe-
 matical Functions, National Bureau of Standards
 Applied Mathematics Series 55, U. S. Department
 of Commerce, Tenth Printing (1972) or later.
 2. D. E. Amos, Computation of Bessel Functions of
 Complex Argument, Report SAND83-0086, Sandia National
 Laboratories, Albuquerque, NM, May 1983.
 3. D. E. Amos, Computation of Bessel Functions of
 Complex Argument and Large Order, Report SAND83-0643,
 Sandia National Laboratories, Albuquerque, NM, May
 1983.
 4. D. E. Amos, A Subroutine Package for Bessel Functions
 of a Complex Argument and Nonnegative Order, Report
 SAND85-1018, Sandia National Laboratory, Albuquerque,
 NM, May 1985.
 5. D. E. Amos, A portable package for Bessel functions
 of a complex argument and nonnegative order, ACM
 Transactions on Mathematical Software, 12 (September
 1986), pp. 265-273.

 ***ROUTINES CALLED CBINU, I1MACH, R1MACH
 ***REVISION HISTORY (YYMMDD)
 830501 DATE WRITTEN
 890801 REVISION DATE from Version 3.2
 910415 Prologue converted to Version 4.0 format. (BAB)
 920128 Category corrected. (WRB)
 920811 Prologue revised. (DWL)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 138

CBESJ

 SUBROUTINE CBESJ (Z, FNU, KODE, N, CY, NZ, IERR)
 ***BEGIN PROLOGUE CBESJ
 ***PURPOSE Compute a sequence of the Bessel functions J(a,z) for
 complex argument z and real nonnegative orders a=b,b+1,
 b+2,... where b>0. A scaling option is available to
 help avoid overflow.
 ***LIBRARY SLATEC
 ***CATEGORY C10A4
 ***TYPE COMPLEX (CBESJ-C, ZBESJ-C)
 ***KEYWORDS BESSEL FUNCTIONS OF COMPLEX ARGUMENT,
 BESSEL FUNCTIONS OF THE FIRST KIND, J BESSEL FUNCTIONS
 ***AUTHOR Amos, D. E., (SNL)
 ***DESCRIPTION

 On KODE=1, CBESJ computes an N member sequence of complex
 Bessel functions CY(L)=J(FNU+L-1,Z) for real nonnegative
 orders FNU+L-1, L=1,...,N and complex Z in the cut plane
 -pi<arg(Z)<=pi. On KODE=2, CBESJ returns the scaled functions

 CY(L) = exp(-abs(Y))*J(FNU+L-1,Z), L=1,...,N and Y=Im(Z)

 which remove the exponential growth in both the upper and
 lower half planes as Z goes to infinity. Definitions and
 notation are found in the NBS Handbook of Mathematical
 Functions (Ref. 1).

 Input
 Z - Argument of type COMPLEX
 FNU - Initial order of type REAL, FNU>=0
 KODE - A parameter to indicate the scaling option
 KODE=1 returns
 CY(L)=J(FNU+L-1,Z), L=1,...,N
 =2 returns
 CY(L)=J(FNU+L-1,Z)*exp(-abs(Y)), L=1,...,N
 where Y=Im(Z)
 N - Number of terms in the sequence, N>=1

 Output
 CY - Result vector of type COMPLEX
 NZ - Number of underflows set to zero
 NZ=0 Normal return
 NZ>0 CY(L)=0, L=N-NZ+1,...,N
 IERR - Error flag
 IERR=0 Normal return - COMPUTATION COMPLETED
 IERR=1 Input error - NO COMPUTATION
 IERR=2 Overflow - NO COMPUTATION
 (Im(Z) too large on KODE=1)
 IERR=3 Precision warning - COMPUTATION COMPLETED
 (Result has half precision or less
 because abs(Z) or FNU+N-1 is large)
 IERR=4 Precision error - NO COMPUTATION
 (Result has no precision because
 abs(Z) or FNU+N-1 is too large)
 IERR=5 Algorithmic error - NO COMPUTATION
 (Termination condition not met)

SLATEC2 (AAAAAA through D9UPAK) - 139

 *Long Description:

 The computation is carried out by the formulae

 J(a,z) = exp(a*pi*i/2)*I(a,-i*z), Im(z)>=0

 J(a,z) = exp(-a*pi*i/2)*I(a, i*z), Im(z)<0

 where the I Bessel function is computed as described in the
 prologue to CBESI.

 For negative orders, the formula

 J(-a,z) = J(a,z)*cos(a*pi) - Y(a,z)*sin(a*pi)

 can be used. However, for large orders close to integers, the
 the function changes radically. When a is a large positive
 integer, the magnitude of J(-a,z)=J(a,z)*cos(a*pi) is a
 large negative power of ten. But when a is not an integer,
 Y(a,z) dominates in magnitude with a large positive power of
 ten and the most that the second term can be reduced is by
 unit roundoff from the coefficient. Thus, wide changes can
 occur within unit roundoff of a large integer for a. Here,
 large means a>abs(z).

 In most complex variable computation, one must evaluate ele-
 mentary functions. When the magnitude of Z or FNU+N-1 is
 large, losses of significance by argument reduction occur.
 Consequently, if either one exceeds U1=SQRT(0.5/UR), then
 losses exceeding half precision are likely and an error flag
 IERR=3 is triggered where UR=R1MACH(4)=UNIT ROUNDOFF. Also,
 if either is larger than U2=0.5/UR, then all significance is
 lost and IERR=4. In order to use the INT function, arguments
 must be further restricted not to exceed the largest machine
 integer, U3=I1MACH(9). Thus, the magnitude of Z and FNU+N-1
 is restricted by MIN(U2,U3). In IEEE arithmetic, U1,U2, and
 U3 approximate 2.0E+3, 4.2E+6, 2.1E+9 in single precision
 and 4.7E+7, 2.3E+15 and 2.1E+9 in double precision. This
 makes U2 limiting in single precision and U3 limiting in
 double precision. This means that one can expect to retain,
 in the worst cases on IEEE machines, no digits in single pre-
 cision and only 6 digits in double precision. Similar con-
 siderations hold for other machines.

 The approximate relative error in the magnitude of a complex
 Bessel function can be expressed as P*10**S where P=MAX(UNIT
 ROUNDOFF,1.0E-18) is the nominal precision and 10**S repre-
 sents the increase in error due to argument reduction in the
 elementary functions. Here, S=MAX(1,ABS(LOG10(ABS(Z))),
 ABS(LOG10(FNU))) approximately (i.e., S=MAX(1,ABS(EXPONENT OF
 ABS(Z),ABS(EXPONENT OF FNU))). However, the phase angle may
 have only absolute accuracy. This is most likely to occur
 when one component (in magnitude) is larger than the other by
 several orders of magnitude. If one component is 10**K larger
 than the other, then one can expect only MAX(ABS(LOG10(P))-K,
 0) significant digits; or, stated another way, when K exceeds
 the exponent of P, no significant digits remain in the smaller
 component. However, the phase angle retains absolute accuracy
 because, in complex arithmetic with precision P, the smaller
 component will not (as a rule) decrease below P times the

SLATEC2 (AAAAAA through D9UPAK) - 140

 magnitude of the larger component. In these extreme cases,
 the principal phase angle is on the order of +P, -P, PI/2-P,
 or -PI/2+P.

 ***REFERENCES 1. M. Abramowitz and I. A. Stegun, Handbook of Mathe-
 matical Functions, National Bureau of Standards
 Applied Mathematics Series 55, U. S. Department
 of Commerce, Tenth Printing (1972) or later.
 2. D. E. Amos, Computation of Bessel Functions of
 Complex Argument, Report SAND83-0086, Sandia National
 Laboratories, Albuquerque, NM, May 1983.
 3. D. E. Amos, Computation of Bessel Functions of
 Complex Argument and Large Order, Report SAND83-0643,
 Sandia National Laboratories, Albuquerque, NM, May
 1983.
 4. D. E. Amos, A Subroutine Package for Bessel Functions
 of a Complex Argument and Nonnegative Order, Report
 SAND85-1018, Sandia National Laboratory, Albuquerque,
 NM, May 1985.
 5. D. E. Amos, A portable package for Bessel functions
 of a complex argument and nonnegative order, ACM
 Transactions on Mathematical Software, 12 (September
 1986), pp. 265-273.

 ***ROUTINES CALLED CBINU, I1MACH, R1MACH
 ***REVISION HISTORY (YYMMDD)
 830501 DATE WRITTEN
 890801 REVISION DATE from Version 3.2
 910415 Prologue converted to Version 4.0 format. (BAB)
 920128 Category corrected. (WRB)
 920811 Prologue revised. (DWL)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 141

CBESK

 SUBROUTINE CBESK (Z, FNU, KODE, N, CY, NZ, IERR)
 ***BEGIN PROLOGUE CBESK
 ***PURPOSE Compute a sequence of the Bessel functions K(a,z) for
 complex argument z and real nonnegative orders a=b,b+1,
 b+2,... where b>0. A scaling option is available to
 help avoid overflow.
 ***LIBRARY SLATEC
 ***CATEGORY C10B4
 ***TYPE COMPLEX (CBESK-C, ZBESK-C)
 ***KEYWORDS BESSEL FUNCTIONS OF COMPLEX ARGUMENT, K BESSEL FUNCTIONS,
 MODIFIED BESSEL FUNCTIONS
 ***AUTHOR Amos, D. E., (SNL)
 ***DESCRIPTION

 On KODE=1, CBESK computes an N member sequence of complex
 Bessel functions CY(L)=K(FNU+L-1,Z) for real nonnegative
 orders FNU+L-1, L=1,...,N and complex Z.NE.0 in the cut
 plane -pi<arg(Z)<=pi. On KODE=2, CBESJ returns the scaled
 functions

 CY(L) = exp(Z)*K(FNU+L-1,Z), L=1,...,N

 which remove the exponential growth in both the left and
 right half planes as Z goes to infinity. Definitions and
 notation are found in the NBS Handbook of Mathematical
 Functions (Ref. 1).

 Input
 Z - Nonzero argument of type COMPLEX
 FNU - Initial order of type REAL, FNU>=0
 KODE - A parameter to indicate the scaling option
 KODE=1 returns
 CY(L)=K(FNU+L-1,Z), L=1,...,N
 =2 returns
 CY(L)=K(FNU+L-1,Z)*EXP(Z), L=1,...,N
 N - Number of terms in the sequence, N>=1

 Output
 CY - Result vector of type COMPLEX
 NZ - Number of underflows set to zero
 NZ=0 Normal return
 NZ>0 CY(L)=0 for NZ values of L (if Re(Z)>0
 then CY(L)=0 for L=1,...,NZ; in the
 complementary half plane the underflows
 may not be in an uninterrupted sequence)
 IERR - Error flag
 IERR=0 Normal return - COMPUTATION COMPLETED
 IERR=1 Input error - NO COMPUTATION
 IERR=2 Overflow - NO COMPUTATION
 (abs(Z) too small and/or FNU+N-1
 too large)
 IERR=3 Precision warning - COMPUTATION COMPLETED
 (Result has half precision or less
 because abs(Z) or FNU+N-1 is large)
 IERR=4 Precision error - NO COMPUTATION
 (Result has no precision because

SLATEC2 (AAAAAA through D9UPAK) - 142

 abs(Z) or FNU+N-1 is too large)
 IERR=5 Algorithmic error - NO COMPUTATION
 (Termination condition not met)

 *Long Description:

 Equations of the reference are implemented to compute K(a,z)
 for small orders a and a+1 in the right half plane Re(z)>=0.
 Forward recurrence generates higher orders. The formula

 K(a,z*exp((t)) = exp(-t)*K(a,z) - t*I(a,z), Re(z)>0
 t = i*pi or -i*pi

 continues K to the left half plane.

 For large orders, K(a,z) is computed by means of its uniform
 asymptotic expansion.

 For negative orders, the formula

 K(-a,z) = K(a,z)

 can be used.

 CBESK assumes that a significant digit sinh function is
 available.

 In most complex variable computation, one must evaluate ele-
 mentary functions. When the magnitude of Z or FNU+N-1 is
 large, losses of significance by argument reduction occur.
 Consequently, if either one exceeds U1=SQRT(0.5/UR), then
 losses exceeding half precision are likely and an error flag
 IERR=3 is triggered where UR=R1MACH(4)=UNIT ROUNDOFF. Also,
 if either is larger than U2=0.5/UR, then all significance is
 lost and IERR=4. In order to use the INT function, arguments
 must be further restricted not to exceed the largest machine
 integer, U3=I1MACH(9). Thus, the magnitude of Z and FNU+N-1
 is restricted by MIN(U2,U3). In IEEE arithmetic, U1,U2, and
 U3 approximate 2.0E+3, 4.2E+6, 2.1E+9 in single precision
 and 4.7E+7, 2.3E+15 and 2.1E+9 in double precision. This
 makes U2 limiting in single precision and U3 limiting in
 double precision. This means that one can expect to retain,
 in the worst cases on IEEE machines, no digits in single pre-
 cision and only 6 digits in double precision. Similar con-
 siderations hold for other machines.

 The approximate relative error in the magnitude of a complex
 Bessel function can be expressed as P*10**S where P=MAX(UNIT
 ROUNDOFF,1.0E-18) is the nominal precision and 10**S repre-
 sents the increase in error due to argument reduction in the
 elementary functions. Here, S=MAX(1,ABS(LOG10(ABS(Z))),
 ABS(LOG10(FNU))) approximately (i.e., S=MAX(1,ABS(EXPONENT OF
 ABS(Z),ABS(EXPONENT OF FNU))). However, the phase angle may
 have only absolute accuracy. This is most likely to occur
 when one component (in magnitude) is larger than the other by
 several orders of magnitude. If one component is 10**K larger
 than the other, then one can expect only MAX(ABS(LOG10(P))-K,
 0) significant digits; or, stated another way, when K exceeds
 the exponent of P, no significant digits remain in the smaller
 component. However, the phase angle retains absolute accuracy

SLATEC2 (AAAAAA through D9UPAK) - 143

 because, in complex arithmetic with precision P, the smaller
 component will not (as a rule) decrease below P times the
 magnitude of the larger component. In these extreme cases,
 the principal phase angle is on the order of +P, -P, PI/2-P,
 or -PI/2+P.

 ***REFERENCES 1. M. Abramowitz and I. A. Stegun, Handbook of Mathe-
 matical Functions, National Bureau of Standards
 Applied Mathematics Series 55, U. S. Department
 of Commerce, Tenth Printing (1972) or later.
 2. D. E. Amos, Computation of Bessel Functions of
 Complex Argument, Report SAND83-0086, Sandia National
 Laboratories, Albuquerque, NM, May 1983.
 3. D. E. Amos, Computation of Bessel Functions of
 Complex Argument and Large Order, Report SAND83-0643,
 Sandia National Laboratories, Albuquerque, NM, May
 1983.
 4. D. E. Amos, A Subroutine Package for Bessel Functions
 of a Complex Argument and Nonnegative Order, Report
 SAND85-1018, Sandia National Laboratory, Albuquerque,
 NM, May 1985.
 5. D. E. Amos, A portable package for Bessel functions
 of a complex argument and nonnegative order, ACM
 Transactions on Mathematical Software, 12 (September
 1986), pp. 265-273.

 ***ROUTINES CALLED CACON, CBKNU, CBUNK, CUOIK, I1MACH, R1MACH
 ***REVISION HISTORY (YYMMDD)
 830501 DATE WRITTEN
 890801 REVISION DATE from Version 3.2
 910415 Prologue converted to Version 4.0 format. (BAB)
 920128 Category corrected. (WRB)
 920811 Prologue revised. (DWL)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 144

CBESY

 SUBROUTINE CBESY (Z, FNU, KODE, N, CY, NZ, CWRK, IERR)
 ***BEGIN PROLOGUE CBESY
 ***PURPOSE Compute a sequence of the Bessel functions Y(a,z) for
 complex argument z and real nonnegative orders a=b,b+1,
 b+2,... where b>0. A scaling option is available to
 help avoid overflow.
 ***LIBRARY SLATEC
 ***CATEGORY C10A4
 ***TYPE COMPLEX (CBESY-C, ZBESY-C)
 ***KEYWORDS BESSEL FUNCTIONS OF COMPLEX ARGUMENT,
 BESSEL FUNCTIONS OF SECOND KIND, WEBER'S FUNCTION,
 Y BESSEL FUNCTIONS
 ***AUTHOR Amos, D. E., (SNL)
 ***DESCRIPTION

 On KODE=1, CBESY computes an N member sequence of complex
 Bessel functions CY(L)=Y(FNU+L-1,Z) for real nonnegative
 orders FNU+L-1, L=1,...,N and complex Z in the cut plane
 -pi<arg(Z)<=pi. On KODE=2, CBESY returns the scaled
 functions

 CY(L) = exp(-abs(Y))*Y(FNU+L-1,Z), L=1,...,N, Y=Im(Z)

 which remove the exponential growth in both the upper and
 lower half planes as Z goes to infinity. Definitions and
 notation are found in the NBS Handbook of Mathematical
 Functions (Ref. 1).

 Input
 Z - Nonzero argument of type COMPLEX
 FNU - Initial order of type REAL, FNU>=0
 KODE - A parameter to indicate the scaling option
 KODE=1 returns
 CY(L)=Y(FNU+L-1,Z), L=1,...,N
 =2 returns
 CY(L)=Y(FNU+L-1,Z)*exp(-abs(Y)), L=1,...,N
 where Y=Im(Z)
 N - Number of terms in the sequence, N>=1
 CWRK - A work vector of type COMPLEX and dimension N

 Output
 CY - Result vector of type COMPLEX
 NZ - Number of underflows set to zero
 NZ=0 Normal return
 NZ>0 CY(L)=0 for NZ values of L, usually on
 KODE=2 (the underflows may not be in an
 uninterrupted sequence)
 IERR - Error flag
 IERR=0 Normal return - COMPUTATION COMPLETED
 IERR=1 Input error - NO COMPUTATION
 IERR=2 Overflow - NO COMPUTATION
 (abs(Z) too small and/or FNU+N-1
 too large)
 IERR=3 Precision warning - COMPUTATION COMPLETED
 (Result has half precision or less
 because abs(Z) or FNU+N-1 is large)

SLATEC2 (AAAAAA through D9UPAK) - 145

 IERR=4 Precision error - NO COMPUTATION
 (Result has no precision because
 abs(Z) or FNU+N-1 is too large)
 IERR=5 Algorithmic error - NO COMPUTATION
 (Termination condition not met)

 *Long Description:

 The computation is carried out by the formula

 Y(a,z) = (H(1,a,z) - H(2,a,z))/(2*i)

 where the Hankel functions are computed as described in CBESH.

 For negative orders, the formula

 Y(-a,z) = Y(a,z)*cos(a*pi) + J(a,z)*sin(a*pi)

 can be used. However, for large orders close to half odd
 integers the function changes radically. When a is a large
 positive half odd integer, the magnitude of Y(-a,z)=J(a,z)*
 sin(a*pi) is a large negative power of ten. But when a is
 not a half odd integer, Y(a,z) dominates in magnitude with a
 large positive power of ten and the most that the second term
 can be reduced is by unit roundoff from the coefficient.
 Thus, wide changes can occur within unit roundoff of a large
 half odd integer. Here, large means a>abs(z).

 In most complex variable computation, one must evaluate ele-
 mentary functions. When the magnitude of Z or FNU+N-1 is
 large, losses of significance by argument reduction occur.
 Consequently, if either one exceeds U1=SQRT(0.5/UR), then
 losses exceeding half precision are likely and an error flag
 IERR=3 is triggered where UR=R1MACH(4)=UNIT ROUNDOFF. Also,
 if either is larger than U2=0.5/UR, then all significance is
 lost and IERR=4. In order to use the INT function, arguments
 must be further restricted not to exceed the largest machine
 integer, U3=I1MACH(9). Thus, the magnitude of Z and FNU+N-1
 is restricted by MIN(U2,U3). In IEEE arithmetic, U1,U2, and
 U3 approximate 2.0E+3, 4.2E+6, 2.1E+9 in single precision
 and 4.7E+7, 2.3E+15 and 2.1E+9 in double precision. This
 makes U2 limiting in single precision and U3 limiting in
 double precision. This means that one can expect to retain,
 in the worst cases on IEEE machines, no digits in single pre-
 cision and only 6 digits in double precision. Similar con-
 siderations hold for other machines.

 The approximate relative error in the magnitude of a complex
 Bessel function can be expressed as P*10**S where P=MAX(UNIT
 ROUNDOFF,1.0E-18) is the nominal precision and 10**S repre-
 sents the increase in error due to argument reduction in the
 elementary functions. Here, S=MAX(1,ABS(LOG10(ABS(Z))),
 ABS(LOG10(FNU))) approximately (i.e., S=MAX(1,ABS(EXPONENT OF
 ABS(Z),ABS(EXPONENT OF FNU))). However, the phase angle may
 have only absolute accuracy. This is most likely to occur
 when one component (in magnitude) is larger than the other by
 several orders of magnitude. If one component is 10**K larger
 than the other, then one can expect only MAX(ABS(LOG10(P))-K,
 0) significant digits; or, stated another way, when K exceeds
 the exponent of P, no significant digits remain in the smaller

SLATEC2 (AAAAAA through D9UPAK) - 146

 component. However, the phase angle retains absolute accuracy
 because, in complex arithmetic with precision P, the smaller
 component will not (as a rule) decrease below P times the
 magnitude of the larger component. In these extreme cases,
 the principal phase angle is on the order of +P, -P, PI/2-P,
 or -PI/2+P.

 ***REFERENCES 1. M. Abramowitz and I. A. Stegun, Handbook of Mathe-
 matical Functions, National Bureau of Standards
 Applied Mathematics Series 55, U. S. Department
 of Commerce, Tenth Printing (1972) or later.
 2. D. E. Amos, Computation of Bessel Functions of
 Complex Argument, Report SAND83-0086, Sandia National
 Laboratories, Albuquerque, NM, May 1983.
 3. D. E. Amos, Computation of Bessel Functions of
 Complex Argument and Large Order, Report SAND83-0643,
 Sandia National Laboratories, Albuquerque, NM, May
 1983.
 4. D. E. Amos, A Subroutine Package for Bessel Functions
 of a Complex Argument and Nonnegative Order, Report
 SAND85-1018, Sandia National Laboratory, Albuquerque,
 NM, May 1985.
 5. D. E. Amos, A portable package for Bessel functions
 of a complex argument and nonnegative order, ACM
 Transactions on Mathematical Software, 12 (September
 1986), pp. 265-273.

 ***ROUTINES CALLED CBESH, I1MACH, R1MACH
 ***REVISION HISTORY (YYMMDD)
 830501 DATE WRITTEN
 890801 REVISION DATE from Version 3.2
 910415 Prologue converted to Version 4.0 format. (BAB)
 920128 Category corrected. (WRB)
 920811 Prologue revised. (DWL)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 147

CBETA

 COMPLEX FUNCTION CBETA (A, B)
 ***BEGIN PROLOGUE CBETA
 ***PURPOSE Compute the complete Beta function.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C7B
 ***TYPE COMPLEX (BETA-S, DBETA-D, CBETA-C)
 ***KEYWORDS COMPLETE BETA FUNCTION, FNLIB, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 CBETA computes the complete beta function of complex parameters A
 and B.
 Input Parameters:
 A complex and the real part of A positive
 B complex and the real part of B positive

 ***REFERENCES (NONE)
 ***ROUTINES CALLED CGAMMA, CLBETA, GAMLIM, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 890206 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 900727 Added EXTERNAL statement. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 148

CBIRY

 SUBROUTINE CBIRY (Z, ID, KODE, BI, IERR)
 ***BEGIN PROLOGUE CBIRY
 ***PURPOSE Compute the Airy function Bi(z) or its derivative dBi/dz
 for complex argument z. A scaling option is available
 to help avoid overflow.
 ***LIBRARY SLATEC
 ***CATEGORY C10D
 ***TYPE COMPLEX (CBIRY-C, ZBIRY-C)
 ***KEYWORDS AIRY FUNCTION, BESSEL FUNCTION OF ORDER ONE THIRD,
 BESSEL FUNCTION OF ORDER TWO THIRDS
 ***AUTHOR Amos, D. E., (SNL)
 ***DESCRIPTION

 On KODE=1, CBIRY computes the complex Airy function Bi(z)
 or its derivative dBi/dz on ID=0 or ID=1 respectively.
 On KODE=2, a scaling option exp(abs(Re(zeta)))*Bi(z) or
 exp(abs(Re(zeta)))*dBi/dz is provided to remove the
 exponential behavior in both the left and right half planes
 where zeta=(2/3)*z**(3/2).

 The Airy functions Bi(z) and dBi/dz are analytic in the
 whole z-plane, and the scaling option does not destroy this
 property.

 Input
 Z - Argument of type COMPLEX
 ID - Order of derivative, ID=0 or ID=1
 KODE - A parameter to indicate the scaling option
 KODE=1 returns
 BI=Bi(z) on ID=0
 BI=dBi/dz on ID=1
 at z=Z
 =2 returns
 BI=exp(abs(Re(zeta)))*Bi(z) on ID=0
 BI=exp(abs(Re(zeta)))*dBi/dz on ID=1
 at z=Z where zeta=(2/3)*z**(3/2)

 Output
 BI - Result of type COMPLEX
 IERR - Error flag
 IERR=0 Normal return - COMPUTATION COMPLETED
 IERR=1 Input error - NO COMPUTATION
 IERR=2 Overflow - NO COMPUTATION
 (Re(Z) too large with KODE=1)
 IERR=3 Precision warning - COMPUTATION COMPLETED
 (Result has less than half precision)
 IERR=4 Precision error - NO COMPUTATION
 (Result has no precision)
 IERR=5 Algorithmic error - NO COMPUTATION
 (Termination condition not met)

 *Long Description:

 Bi(z) and dBi/dz are computed from I Bessel functions by

 Bi(z) = c*sqrt(z)*(I(-1/3,zeta) + I(1/3,zeta))

SLATEC2 (AAAAAA through D9UPAK) - 149

 dBi/dz = c* z *(I(-2/3,zeta) + I(2/3,zeta))
 c = 1/sqrt(3)
 zeta = (2/3)*z**(3/2)

 when abs(z)>1 and from power series when abs(z)<=1.

 In most complex variable computation, one must evaluate ele-
 mentary functions. When the magnitude of Z is large, losses
 of significance by argument reduction occur. Consequently, if
 the magnitude of ZETA=(2/3)*Z**(3/2) exceeds U1=SQRT(0.5/UR),
 then losses exceeding half precision are likely and an error
 flag IERR=3 is triggered where UR=R1MACH(4)=UNIT ROUNDOFF.
 Also, if the magnitude of ZETA is larger than U2=0.5/UR, then
 all significance is lost and IERR=4. In order to use the INT
 function, ZETA must be further restricted not to exceed
 U3=I1MACH(9)=LARGEST INTEGER. Thus, the magnitude of ZETA
 must be restricted by MIN(U2,U3). In IEEE arithmetic, U1,U2,
 and U3 are approximately 2.0E+3, 4.2E+6, 2.1E+9 in single
 precision and 4.7E+7, 2.3E+15, 2.1E+9 in double precision.
 This makes U2 limiting is single precision and U3 limiting
 in double precision. This means that the magnitude of Z
 cannot exceed approximately 3.4E+4 in single precision and
 2.1E+6 in double precision. This also means that one can
 expect to retain, in the worst cases on 32-bit machines,
 no digits in single precision and only 6 digits in double
 precision.

 The approximate relative error in the magnitude of a complex
 Bessel function can be expressed as P*10**S where P=MAX(UNIT
 ROUNDOFF,1.0E-18) is the nominal precision and 10**S repre-
 sents the increase in error due to argument reduction in the
 elementary functions. Here, S=MAX(1,ABS(LOG10(ABS(Z))),
 ABS(LOG10(FNU))) approximately (i.e., S=MAX(1,ABS(EXPONENT OF
 ABS(Z),ABS(EXPONENT OF FNU))). However, the phase angle may
 have only absolute accuracy. This is most likely to occur
 when one component (in magnitude) is larger than the other by
 several orders of magnitude. If one component is 10**K larger
 than the other, then one can expect only MAX(ABS(LOG10(P))-K,
 0) significant digits; or, stated another way, when K exceeds
 the exponent of P, no significant digits remain in the smaller
 component. However, the phase angle retains absolute accuracy
 because, in complex arithmetic with precision P, the smaller
 component will not (as a rule) decrease below P times the
 magnitude of the larger component. In these extreme cases,
 the principal phase angle is on the order of +P, -P, PI/2-P,
 or -PI/2+P.

 ***REFERENCES 1. M. Abramowitz and I. A. Stegun, Handbook of Mathe-
 matical Functions, National Bureau of Standards
 Applied Mathematics Series 55, U. S. Department
 of Commerce, Tenth Printing (1972) or later.
 2. D. E. Amos, Computation of Bessel Functions of
 Complex Argument and Large Order, Report SAND83-0643,
 Sandia National Laboratories, Albuquerque, NM, May
 1983.
 3. D. E. Amos, A Subroutine Package for Bessel Functions
 of a Complex Argument and Nonnegative Order, Report
 SAND85-1018, Sandia National Laboratory, Albuquerque,
 NM, May 1985.
 4. D. E. Amos, A portable package for Bessel functions

SLATEC2 (AAAAAA through D9UPAK) - 150

 of a complex argument and nonnegative order, ACM
 Transactions on Mathematical Software, 12 (September
 1986), pp. 265-273.

 ***ROUTINES CALLED CBINU, I1MACH, R1MACH
 ***REVISION HISTORY (YYMMDD)
 830501 DATE WRITTEN
 890801 REVISION DATE from Version 3.2
 910415 Prologue converted to Version 4.0 format. (BAB)
 920128 Category corrected. (WRB)
 920811 Prologue revised. (DWL)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 151

CBLKTR

 SUBROUTINE CBLKTR (IFLG, NP, N, AN, BN, CN, MP, M, AM, BM, CM,
 + IDIMY, Y, IERROR, W)
 ***BEGIN PROLOGUE CBLKTR
 ***PURPOSE Solve a block tridiagonal system of linear equations
 (usually resulting from the discretization of separable
 two-dimensional elliptic equations).
 ***LIBRARY SLATEC (FISHPACK)
 ***CATEGORY I2B4B
 ***TYPE COMPLEX (BLKTRI-S, CBLKTR-C)
 ***KEYWORDS ELLIPTIC PDE, FISHPACK, TRIDIAGONAL LINEAR SYSTEM
 ***AUTHOR Adams, J., (NCAR)
 Swarztrauber, P. N., (NCAR)
 Sweet, R., (NCAR)
 ***DESCRIPTION

 Subroutine CBLKTR is a complex version of subroutine BLKTRI.
 Both subroutines solve a system of linear equations of the form

 AN(J)*X(I,J-1) + AM(I)*X(I-1,J) + (BN(J)+BM(I))*X(I,J)

 + CN(J)*X(I,J+1) + CM(I)*X(I+1,J) = Y(I,J)

 For I = 1,2,...,M and J = 1,2,...,N.

 I+1 and I-1 are evaluated modulo M and J+1 and J-1 modulo N, i.e.,

 X(I,0) = X(I,N), X(I,N+1) = X(I,1),
 X(0,J) = X(M,J), X(M+1,J) = X(1,J).

 These equations usually result from the discretization of
 separable elliptic equations. Boundary conditions may be
 Dirichlet, Neumann, or periodic.

 * * * * * * * * * * On INPUT * * * * * * * * * *

 IFLG
 = 0 Initialization only. Certain quantities that depend on NP,
 N, AN, BN, and CN are computed and stored in the work
 array W.
 = 1 The quantities that were computed in the initialization are
 used to obtain the solution X(I,J).

 NOTE A call with IFLG=0 takes approximately one half the time
 time as a call with IFLG = 1. However, the
 initialization does not have to be repeated unless NP, N,
 AN, BN, or CN change.

 NP
 = 0 If AN(1) and CN(N) are not zero, which corresponds to
 periodic boundary conditions.
 = 1 If AN(1) and CN(N) are zero.

 N
 The number of unknowns in the J-direction. N must be greater
 than 4. The operation count is proportional to MNlog2(N), hence

SLATEC2 (AAAAAA through D9UPAK) - 152

 N should be selected less than or equal to M.

 AN,BN,CN
 Real one-dimensional arrays of length N that specify the
 coefficients in the linear equations given above.

 MP
 = 0 If AM(1) and CM(M) are not zero, which corresponds to
 periodic boundary conditions.
 = 1 If AM(1) = CM(M) = 0 .

 M
 The number of unknowns in the I-direction. M must be greater
 than 4.

 AM,BM,CM
 Complex one-dimensional arrays of length M that specify the
 coefficients in the linear equations given above.

 IDIMY
 The row (or first) dimension of the two-dimensional array Y as
 it appears in the program calling BLKTRI. This parameter is
 used to specify the variable dimension of Y. IDIMY must be at
 least M.

 Y
 A complex two-dimensional array that specifies the values of
 the right side of the linear system of equations given above.
 Y must be dimensioned Y(IDIMY,N) with IDIMY .GE. M.

 W
 A one-dimensional array that must be provided by the user for
 work space.
 If NP=1 define K=INT(log2(N))+1 and set L=2**(K+1) then
 W must have dimension (K-2)*L+K+5+MAX(2N,12M)

 If NP=0 define K=INT(log2(N-1))+1 and set L=2**(K+1) then
 W must have dimension (K-2)*L+K+5+2N+MAX(2N,12M)

 IMPORTANT For purposes of checking, the required dimension
 of W is computed by BLKTRI and stored in W(1)
 in floating point format.

 * * * * * * * * * * On Output * * * * * * * * * *

 Y
 Contains the solution X.

 IERROR
 An error flag that indicates invalid input parameters. Except
 for number zero, a solution is not attempted.

 = 0 No error.
 = 1 M is less than 5.
 = 2 N is less than 5.
 = 3 IDIMY is less than M.
 = 4 BLKTRI failed while computing results that depend on the
 coefficient arrays AN, BN, CN. Check these arrays.
 = 5 AN(J)*CN(J-1) is less than 0 for some J. Possible reasons
 for this condition are

SLATEC2 (AAAAAA through D9UPAK) - 153

 1. The arrays AN and CN are not correct.
 2. Too large a grid spacing was used in the discretization
 of the elliptic equation.
 3. The linear equations resulted from a partial
 differential equation which was not elliptic.

 W
 Contains intermediate values that must not be destroyed if
 CBLKTR will be called again with IFLG=1. W(1) contains the
 number of locations required by W in floating point format.

 *Long Description:

 * * * * * * * Program Specifications * * * * * * * * * * * *

 Dimension of AN(N),BN(N),CN(N),AM(M),BM(M),CM(M),Y(IDIMY,N)
 Arguments W(see argument list)

 Latest June 1979
 Revision

 Required CBLKTR,CBLKT1,PROC,PROCP,CPROC,CPROCP,CCMPB,INXCA,
 Subprograms INXCB,INXCC,CPADD,PGSF,PPGSF,PPPSF,BCRH,TEVLC,
 R1MACH

 Special The algorithm may fail if ABS(BM(I)+BN(J)) is less
 Conditions than ABS(AM(I))+ABS(AN(J))+ABS(CM(I))+ABS(CN(J))
 for some I and J. The algorithm will also fail if
 AN(J)*CN(J-1) is less than zero for some J.
 See the description of the output parameter IERROR.

 Common CCBLK
 Blocks

 I/O NONE

 Precision Single

 Specialist Paul Swarztrauber

 Language FORTRAN

 History CBLKTR is a complex version of BLKTRI (version 3)

 Algorithm Generalized Cyclic Reduction (see reference below)

 Space
 Required CONTROL DATA 7600

 Portability American National Standards Institute FORTRAN.
 The machine accuracy is set using function R1MACH.

 Required NONE
 Resident
 Routines

 References Swarztrauber,P. and R. SWEET, 'Efficient Fortran
 Subprograms for the solution of elliptic equations'
 NCAR TN/IA-109, July, 1975, 138 PP.

SLATEC2 (AAAAAA through D9UPAK) - 154

 SWARZTRAUBER P. ,'A Direct Method for The Discrete
 Solution of Separable Elliptic Equations', SIAM
 J. Numer. Anal.,11(1974) PP. 1136-1150.

 *

 ***REFERENCES P. N. Swarztrauber and R. Sweet, Efficient Fortran
 subprograms for the solution of elliptic equations,
 NCAR TN/IA-109, July 1975, 138 pp.
 P. N. Swarztrauber, A direct method for the discrete
 solution of separable elliptic equations, SIAM Journal
 on Numerical Analysis 11, (1974), pp. 1136-1150.
 ***ROUTINES CALLED CBLKT1, CCMPB, CPROC, CPROCP, PROC, PROCP
 ***COMMON BLOCKS CCBLK
 ***REVISION HISTORY (YYMMDD)
 801001 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 155

CBRT

 FUNCTION CBRT (X)
 ***BEGIN PROLOGUE CBRT
 ***PURPOSE Compute the cube root.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C2
 ***TYPE SINGLE PRECISION (CBRT-S, DCBRT-D, CCBRT-C)
 ***KEYWORDS CUBE ROOT, ELEMENTARY FUNCTIONS, FNLIB, ROOTS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 CBRT(X) calculates the cube root of X.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED R1MACH, R9PAK, R9UPAK
 ***REVISION HISTORY (YYMMDD)
 770601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 156

CCBRT

 COMPLEX FUNCTION CCBRT (Z)
 ***BEGIN PROLOGUE CCBRT
 ***PURPOSE Compute the cube root.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C2
 ***TYPE COMPLEX (CBRT-S, DCBRT-D, CCBRT-C)
 ***KEYWORDS CUBE ROOT, ELEMENTARY FUNCTIONS, FNLIB, ROOTS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 CCBRT(Z) calculates the complex cube root of Z. The principal root
 for which -PI .LT. arg(Z) .LE. +PI is returned.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED CARG, CBRT
 ***REVISION HISTORY (YYMMDD)
 770401 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 157

CCHDC

 SUBROUTINE CCHDC (A, LDA, P, WORK, JPVT, JOB, INFO)
 ***BEGIN PROLOGUE CCHDC
 ***PURPOSE Compute the Cholesky decomposition of a positive definite
 matrix. A pivoting option allows the user to estimate the
 condition number of a positive definite matrix or determine
 the rank of a positive semidefinite matrix.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2D1B
 ***TYPE COMPLEX (SCHDC-S, DCHDC-D, CCHDC-C)
 ***KEYWORDS CHOLESKY DECOMPOSITION, LINEAR ALGEBRA, LINPACK, MATRIX,
 POSITIVE DEFINITE
 ***AUTHOR Dongarra, J., (ANL)
 Stewart, G. W., (U. of Maryland)
 ***DESCRIPTION

 CCHDC computes the Cholesky decomposition of a positive definite
 matrix. A pivoting option allows the user to estimate the
 condition of a positive definite matrix or determine the rank
 of a positive semidefinite matrix.

 On Entry

 A COMPLEX(LDA,P).
 A contains the matrix whose decomposition is to
 be computed. Only the upper half of A need be stored.
 The lower part of The array A is not referenced.

 LDA INTEGER.
 LDA is the leading dimension of the array A.

 P INTEGER.
 P is the order of the matrix.

 WORK COMPLEX.
 WORK is a work array.

 JPVT INTEGER(P).
 JPVT contains integers that control the selection
 of the pivot elements, if pivoting has been requested.
 Each diagonal element A(K,K)
 is placed in one of three classes according to the
 value of JPVT(K)).

 If JPVT(K)) .GT. 0, then X(K) is an initial
 element.

 If JPVT(K)) .EQ. 0, then X(K) is a free element.

 If JPVT(K)) .LT. 0, then X(K) is a final element.

 Before the decomposition is computed, initial elements
 are moved by symmetric row and column interchanges to
 the beginning of the array A and final
 elements to the end. Both initial and final elements
 are frozen in place during the computation and only
 free elements are moved. At the K-th stage of the

SLATEC2 (AAAAAA through D9UPAK) - 158

 reduction, if A(K,K) is occupied by a free element
 it is interchanged with the largest free element
 A(L,L) with L .GE. K. JPVT is not referenced if
 JOB .EQ. 0.

 JOB INTEGER.
 JOB is an integer that initiates column pivoting.
 IF JOB .EQ. 0, no pivoting is done.
 IF JOB .NE. 0, pivoting is done.

 On Return

 A A contains in its upper half the Cholesky factor
 of the matrix A as it has been permuted by pivoting.

 JPVT JPVT(J) contains the index of the diagonal element
 of A that was moved into the J-th position,
 provided pivoting was requested.

 INFO contains the index of the last positive diagonal
 element of the Cholesky factor.

 For positive definite matrices INFO = P is the normal return.
 For pivoting with positive semidefinite matrices INFO will
 in general be less than P. However, INFO may be greater than
 the rank of A, since rounding error can cause an otherwise zero
 element to be positive. Indefinite systems will always cause
 INFO to be less than P.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CAXPY, CSWAP
 ***REVISION HISTORY (YYMMDD)
 790319 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 159

CCHDD

 SUBROUTINE CCHDD (R, LDR, P, X, Z, LDZ, NZ, Y, RHO, C, S, INFO)
 ***BEGIN PROLOGUE CCHDD
 ***PURPOSE Downdate an augmented Cholesky decomposition or the
 triangular factor of an augmented QR decomposition.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D7B
 ***TYPE COMPLEX (SCHDD-S, DCHDD-D, CCHDD-C)
 ***KEYWORDS CHOLESKY DECOMPOSITION, DOWNDATE, LINEAR ALGEBRA, LINPACK,
 MATRIX
 ***AUTHOR Stewart, G. W., (U. of Maryland)
 ***DESCRIPTION

 CCHDD downdates an augmented Cholesky decomposition or the
 triangular factor of an augmented QR decomposition.
 Specifically, given an upper triangular matrix R of order P, a
 row vector X, a column vector Z, and a scalar Y, CCHDD
 determines a unitary matrix U and a scalar ZETA such that

 (R Z) (RR ZZ)
 U * () = () ,
 (0 ZETA) (X Y)

 where RR is upper triangular. If R and Z have been obtained
 from the factorization of a least squares problem, then
 RR and ZZ are the factors corresponding to the problem
 with the observation (X,Y) removed. In this case, if RHO
 is the norm of the residual vector, then the norm of
 the residual vector of the downdated problem is
 SQRT(RHO**2 - ZETA**2). CCHDD will simultaneously downdate
 several triplets (Z,Y,RHO) along with R.
 For a less terse description of what CCHDD does and how
 it may be applied, see the LINPACK Guide.

 The matrix U is determined as the product U(1)*...*U(P)
 where U(I) is a rotation in the (P+1,I)-plane of the
 form

 (C(I) -CONJG(S(I)))
 () .
 (S(I) C(I))

 the rotations are chosen so that C(I) is real.

 The user is warned that a given downdating problem may
 be impossible to accomplish or may produce
 inaccurate results. For example, this can happen
 if X is near a vector whose removal will reduce the
 rank of R. Beware.

 On Entry

 R COMPLEX(LDR,P), where LDR .GE. P.
 R contains the upper triangular matrix
 that is to be downdated. The part of R
 below the diagonal is not referenced.

SLATEC2 (AAAAAA through D9UPAK) - 160

 LDR INTEGER.
 LDR is the leading dimension of the array R.

 p INTEGER.
 P is the order of the matrix R.

 X COMPLEX(P).
 X contains the row vector that is to
 be removed from R. X is not altered by CCHDD.

 Z COMPLEX(LDZ,NZ), where LDZ .GE. P.
 Z is an array of NZ P-vectors which
 are to be downdated along with R.

 LDZ INTEGER.
 LDZ is the leading dimension of the array Z.

 NZ INTEGER.
 NZ is the number of vectors to be downdated
 NZ may be zero, in which case Z, Y, and RHO
 are not referenced.

 Y COMPLEX(NZ).
 Y contains the scalars for the downdating
 of the vectors Z. Y is not altered by CCHDD.

 RHO REAL(NZ).
 RHO contains the norms of the residual
 vectors that are to be downdated.

 On Return

 R
 Z contain the downdated quantities.
 RHO

 C REAL(P).
 C contains the cosines of the transforming
 rotations.

 S COMPLEX(P).
 S contains the sines of the transforming
 rotations.

 INFO INTEGER.
 INFO is set as follows.

 INFO = 0 if the entire downdating
 was successful.

 INFO =-1 if R could not be downdated.
 in this case, all quantities
 are left unaltered.

 INFO = 1 if some RHO could not be
 downdated. The offending RHO's are
 set to -1.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.

SLATEC2 (AAAAAA through D9UPAK) - 161

 ***ROUTINES CALLED CDOTC, SCNRM2
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 162

CCHEX

 SUBROUTINE CCHEX (R, LDR, P, K, L, Z, LDZ, NZ, C, S, JOB)
 ***BEGIN PROLOGUE CCHEX
 ***PURPOSE Update the Cholesky factorization A=TRANS(R)*R of a
 positive definite matrix A of order P under diagonal
 permutations of the form TRANS(E)*A*E, where E is a
 permutation matrix.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D7B
 ***TYPE COMPLEX (SCHEX-S, DCHEX-D, CCHEX-C)
 ***KEYWORDS CHOLESKY DECOMPOSITION, EXCHANGE, LINEAR ALGEBRA, LINPACK,
 MATRIX, POSITIVE DEFINITE
 ***AUTHOR Stewart, G. W., (U. of Maryland)
 ***DESCRIPTION

 CCHEX updates the Cholesky factorization

 A = CTRANS(R)*R

 of a positive definite matrix A of order P under diagonal
 permutations of the form

 TRANS(E)*A*E

 where E is a permutation matrix. Specifically, given
 an upper triangular matrix R and a permutation matrix
 E (which is specified by K, L, and JOB), CCHEX determines
 a unitary matrix U such that

 U*R*E = RR,

 where RR is upper triangular. At the users option, the
 transformation U will be multiplied into the array Z.
 If A = CTRANS(X)*X, so that R is the triangular part of the
 QR factorization of X, then RR is the triangular part of the
 QR factorization of X*E, i.e. X with its columns permuted.
 For a less terse description of what CCHEX does and how
 it may be applied, see the LINPACK Guide.

 The matrix Q is determined as the product U(L-K)*...*U(1)
 of plane rotations of the form

 (C(I) S(I))
 () ,
 (-CONJG(S(I)) C(I))

 where C(I) is real. The rows these rotations operate on
 are described below.

 There are two types of permutations, which are determined
 by the value of JOB.

 1. Right circular shift (JOB = 1).

 The columns are rearranged in the following order.

 1,...,K-1,L,K,K+1,...,L-1,L+1,...,P.

SLATEC2 (AAAAAA through D9UPAK) - 163

 U is the product of L-K rotations U(I), where U(I)
 acts in the (L-I,L-I+1)-plane.

 2. Left circular shift (JOB = 2).
 The columns are rearranged in the following order

 1,...,K-1,K+1,K+2,...,L,K,L+1,...,P.

 U is the product of L-K rotations U(I), where U(I)
 acts in the (K+I-1,K+I)-plane.

 On Entry

 R COMPLEX(LDR,P), where LDR .GE. P.
 R contains the upper triangular factor
 that is to be updated. Elements of R
 below the diagonal are not referenced.

 LDR INTEGER.
 LDR is the leading dimension of the array R.

 P INTEGER.
 P is the order of the matrix R.

 K INTEGER.
 K is the first column to be permuted.

 L INTEGER.
 L is the last column to be permuted.
 L must be strictly greater than K.

 Z COMPLEX(LDZ,NZ), where LDZ .GE. P.
 Z is an array of NZ P-vectors into which the
 transformation U is multiplied. Z is
 not referenced if NZ = 0.

 LDZ INTEGER.
 LDZ is the leading dimension of the array Z.

 NZ INTEGER.
 NZ is the number of columns of the matrix Z.

 JOB INTEGER.
 JOB determines the type of permutation.
 JOB = 1 right circular shift.
 JOB = 2 left circular shift.

 On Return

 R contains the updated factor.

 Z contains the updated matrix Z.

 C REAL(P).
 C contains the cosines of the transforming rotations.

 S COMPLEX(P).
 S contains the sines of the transforming rotations.

SLATEC2 (AAAAAA through D9UPAK) - 164

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CROTG
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 165

CCHUD

 SUBROUTINE CCHUD (R, LDR, P, X, Z, LDZ, NZ, Y, RHO, C, S)
 ***BEGIN PROLOGUE CCHUD
 ***PURPOSE Update an augmented Cholesky decomposition of the
 triangular part of an augmented QR decomposition.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D7B
 ***TYPE COMPLEX (SCHUD-S, DCHUD-D, CCHUD-C)
 ***KEYWORDS CHOLESKY DECOMPOSITION, LINEAR ALGEBRA, LINPACK, MATRIX,
 UPDATE
 ***AUTHOR Stewart, G. W., (U. of Maryland)
 ***DESCRIPTION

 CCHUD updates an augmented Cholesky decomposition of the
 triangular part of an augmented QR decomposition. Specifically,
 given an upper triangular matrix R of order P, a row vector
 X, a column vector Z, and a scalar Y, CCHUD determines a
 unitary matrix U and a scalar ZETA such that

 (R Z) (RR ZZ)
 U * () = () ,
 (X Y) (0 ZETA)

 where RR is upper triangular. If R and Z have been
 obtained from the factorization of a least squares
 problem, then RR and ZZ are the factors corresponding to
 the problem with the observation (X,Y) appended. In this
 case, if RHO is the norm of the residual vector, then the
 norm of the residual vector of the updated problem is
 SQRT(RHO**2 + ZETA**2). CCHUD will simultaneously update
 several triplets (Z,Y,RHO).

 For a less terse description of what CCHUD does and how
 it may be applied see the LINPACK Guide.

 The matrix U is determined as the product U(P)*...*U(1),
 where U(I) is a rotation in the (I,P+1) plane of the
 form

 ((CI) S(I))
 () .
 (-CONJG(S(I)) (CI))

 The rotations are chosen so that C(I) is real.

 On Entry

 R COMPLEX(LDR,P), where LDR .GE. P.
 R contains the upper triangular matrix
 that is to be updated. The part of R
 below the diagonal is not referenced.

 LDR INTEGER.
 LDR is the leading dimension of the array R.

 P INTEGER.

SLATEC2 (AAAAAA through D9UPAK) - 166

 P is the order of the matrix R.

 X COMPLEX(P).
 X contains the row to be added to R. X is
 not altered by CCHUD.

 Z COMPLEX(LDZ,NZ), where LDZ .GE. P.
 Z is an array containing NZ P-vectors to
 be updated with R.

 LDZ INTEGER.
 LDZ is the leading dimension of the array Z.

 NZ INTEGER.
 NZ is the number of vectors to be updated
 NZ may be zero, in which case Z, Y, and RHO
 are not referenced.

 Y COMPLEX(NZ).
 Y contains the scalars for updating the vectors
 Z. Y is not altered by CCHUD.

 RHO REAL(NZ).
 RHO contains the norms of the residual
 vectors that are to be updated. If RHO(J)
 is negative, it is left unaltered.

 On Return

 RC
 RHO contain the updated quantities.
 Z

 C REAL(P).
 C contains the cosines of the transforming
 rotations.

 S COMPLEX(P).
 S contains the sines of the transforming
 rotations.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CROTG
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 167

CCOPY

 SUBROUTINE CCOPY (N, CX, INCX, CY, INCY)
 ***BEGIN PROLOGUE CCOPY
 ***PURPOSE Copy a vector.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1A5
 ***TYPE COMPLEX (SCOPY-S, DCOPY-D, CCOPY-C, ICOPY-I)
 ***KEYWORDS BLAS, COPY, LINEAR ALGEBRA, VECTOR
 ***AUTHOR Lawson, C. L., (JPL)
 Hanson, R. J., (SNLA)
 Kincaid, D. R., (U. of Texas)
 Krogh, F. T., (JPL)
 ***DESCRIPTION

 B L A S Subprogram
 Description of Parameters

 --Input--
 N number of elements in input vector(s)
 CX complex vector with N elements
 INCX storage spacing between elements of CX
 CY complex vector with N elements
 INCY storage spacing between elements of CY

 --Output--
 CY copy of vector CX (unchanged if N .LE. 0)

 Copy complex CX to complex CY.
 For I = 0 to N-1, copy CX(LX+I*INCX) to CY(LY+I*INCY),
 where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is
 defined in a similar way using INCY.

 ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
 Krogh, Basic linear algebra subprograms for Fortran
 usage, Algorithm No. 539, Transactions on Mathematical
 Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 791001 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920310 Corrected definition of LX in DESCRIPTION. (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 168

CCOSH

 COMPLEX FUNCTION CCOSH (Z)
 ***BEGIN PROLOGUE CCOSH
 ***PURPOSE Compute the complex hyperbolic cosine.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C4C
 ***TYPE COMPLEX (CCOSH-C)
 ***KEYWORDS ELEMENTARY FUNCTIONS, FNLIB, HYPERBOLIC COSINE
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 CCOSH(Z) calculates the complex hyperbolic cosine of Z.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 770401 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 169

CCOT

 COMPLEX FUNCTION CCOT (Z)
 ***BEGIN PROLOGUE CCOT
 ***PURPOSE Compute the cotangent.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C4A
 ***TYPE COMPLEX (COT-S, DCOT-D, CCOT-C)
 ***KEYWORDS COTANGENT, ELEMENTARY FUNCTIONS, FNLIB, TRIGONOMETRIC
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 CCOT(Z) calculates the complex trigonometric cotangent of Z.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED R1MACH, XERCLR, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770401 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 170

CDCDOT

 COMPLEX FUNCTION CDCDOT (N, CB, CX, INCX, CY, INCY)
 ***BEGIN PROLOGUE CDCDOT
 ***PURPOSE Compute the inner product of two vectors with extended
 precision accumulation.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1A4
 ***TYPE COMPLEX (SDSDOT-S, CDCDOT-C)
 ***KEYWORDS BLAS, DOT PRODUCT, INNER PRODUCT, LINEAR ALGEBRA, VECTOR
 ***AUTHOR Lawson, C. L., (JPL)
 Hanson, R. J., (SNLA)
 Kincaid, D. R., (U. of Texas)
 Krogh, F. T., (JPL)
 ***DESCRIPTION

 B L A S Subprogram
 Description of Parameters

 --Input--
 N number of elements in input vector(s)
 CB complex scalar to be added to inner product
 CX complex vector with N elements
 INCX storage spacing between elements of CX
 CY complex vector with N elements
 INCY storage spacing between elements of CY

 --Output--
 CDCDOT complex dot product (CB if N .LE. 0)

 Returns complex result with dot product accumulated in D.P.
 CDCDOT = CB + sum for I = 0 to N-1 of CX(LX+I*INCY)*CY(LY+I*INCY)
 where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is
 defined in a similar way using INCY.

 ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
 Krogh, Basic linear algebra subprograms for Fortran
 usage, Algorithm No. 539, Transactions on Mathematical
 Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 791001 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920310 Corrected definition of LX in DESCRIPTION. (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 171

CDOTC

 COMPLEX FUNCTION CDOTC (N, CX, INCX, CY, INCY)
 ***BEGIN PROLOGUE CDOTC
 ***PURPOSE Dot product of two complex vectors using the complex
 conjugate of the first vector.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1A4
 ***TYPE COMPLEX (CDOTC-C)
 ***KEYWORDS BLAS, INNER PRODUCT, LINEAR ALGEBRA, VECTOR
 ***AUTHOR Lawson, C. L., (JPL)
 Hanson, R. J., (SNLA)
 Kincaid, D. R., (U. of Texas)
 Krogh, F. T., (JPL)
 ***DESCRIPTION

 B L A S Subprogram
 Description of Parameters

 --Input--
 N number of elements in input vector(s)
 CX complex vector with N elements
 INCX storage spacing between elements of CX
 CY complex vector with N elements
 INCY storage spacing between elements of CY

 --Output--
 CDOTC complex result (zero if N .LE. 0)

 Returns the dot product of complex CX and CY, using CONJUGATE(CX)
 CDOTC = SUM for I = 0 to N-1 of CONJ(CX(LX+I*INCX))*CY(LY+I*INCY),
 where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is
 defined in a similar way using INCY.

 ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
 Krogh, Basic linear algebra subprograms for Fortran
 usage, Algorithm No. 539, Transactions on Mathematical
 Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 791001 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920310 Corrected definition of LX in DESCRIPTION. (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 172

CDOTU

 COMPLEX FUNCTION CDOTU (N, CX, INCX, CY, INCY)
 ***BEGIN PROLOGUE CDOTU
 ***PURPOSE Compute the inner product of two vectors.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1A4
 ***TYPE COMPLEX (SDOT-S, DDOT-D, CDOTU-C)
 ***KEYWORDS BLAS, INNER PRODUCT, LINEAR ALGEBRA, VECTOR
 ***AUTHOR Lawson, C. L., (JPL)
 Hanson, R. J., (SNLA)
 Kincaid, D. R., (U. of Texas)
 Krogh, F. T., (JPL)
 ***DESCRIPTION

 B L A S Subprogram
 Description of parameters

 --Input--
 N number of elements in input vector(s)
 CX complex vector with N elements
 INCX storage spacing between elements of CX
 CY complex vector with N elements
 INCY storage spacing between elements of CY

 --Output--
 CDOTU complex result (zero if N .LE. 0)

 Returns the dot product of complex CX and CY, no conjugation
 CDOTU = SUM for I = 0 to N-1 of CX(LX+I*INCX) * CY(LY+I*INCY),
 where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is
 defined in a similar way using INCY.

 ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
 Krogh, Basic linear algebra subprograms for Fortran
 usage, Algorithm No. 539, Transactions on Mathematical
 Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 791001 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920310 Corrected definition of LX in DESCRIPTION. (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 173

CDRIV1

 SUBROUTINE CDRIV1 (N, T, Y, F, TOUT, MSTATE, EPS, WORK, LENW,
 8 IERFLG)
 ***BEGIN PROLOGUE CDRIV1
 ***PURPOSE The function of CDRIV1 is to solve N (200 or fewer)
 ordinary differential equations of the form
 dY(I)/dT = F(Y(I),T), given the initial conditions
 Y(I) = YI. CDRIV1 allows complex-valued differential
 equations.
 ***LIBRARY SLATEC (SDRIVE)
 ***CATEGORY I1A2, I1A1B
 ***TYPE COMPLEX (SDRIV1-S, DDRIV1-D, CDRIV1-C)
 ***KEYWORDS COMPLEX VALUED, GEAR'S METHOD, INITIAL VALUE PROBLEMS,
 ODE, ORDINARY DIFFERENTIAL EQUATIONS, SDRIVE, STIFF
 ***AUTHOR Kahaner, D. K., (NIST)
 National Institute of Standards and Technology
 Gaithersburg, MD 20899
 Sutherland, C. D., (LANL)
 Mail Stop D466
 Los Alamos National Laboratory
 Los Alamos, NM 87545
 ***DESCRIPTION

 Version 92.1

 I. CHOOSING THE CORRECT ROUTINE

 SDRIV
 DDRIV
 CDRIV
 These are the generic names for three packages for solving
 initial value problems for ordinary differential equations.
 SDRIV uses single precision arithmetic. DDRIV uses double
 precision arithmetic. CDRIV allows complex-valued
 differential equations, integrated with respect to a single,
 real, independent variable.

 As an aid in selecting the proper program, the following is a
 discussion of the important options or restrictions associated with
 each program:

 A. CDRIV1 should be tried first for those routine problems with
 no more than 200 differential equations (CDRIV2 and CDRIV3
 have no such restriction.) Internally this routine has two
 important technical defaults:
 1. Numerical approximation of the Jacobian matrix of the
 right hand side is used.
 2. The stiff solver option is used.
 Most users of CDRIV1 should not have to concern themselves
 with these details.

 B. CDRIV2 should be considered for those problems for which
 CDRIV1 is inadequate. For example, CDRIV1 may have difficulty
 with problems having zero initial conditions and zero
 derivatives. In this case CDRIV2, with an appropriate value
 of the parameter EWT, should perform more efficiently. CDRIV2
 provides three important additional options:

SLATEC2 (AAAAAA through D9UPAK) - 174

 1. The nonstiff equation solver (as well as the stiff
 solver) is available.
 2. The root-finding option is available.
 3. The program can dynamically select either the non-stiff
 or the stiff methods.
 Internally this routine also defaults to the numerical
 approximation of the Jacobian matrix of the right hand side.

 C. CDRIV3 is the most flexible, and hence the most complex, of
 the programs. Its important additional features include:
 1. The ability to exploit band structure in the Jacobian
 matrix.
 2. The ability to solve some implicit differential
 equations, i.e., those having the form:
 A(Y,T)*dY/dT = F(Y,T).
 3. The option of integrating in the one step mode.
 4. The option of allowing the user to provide a routine
 which computes the analytic Jacobian matrix of the right
 hand side.
 5. The option of allowing the user to provide a routine
 which does all the matrix algebra associated with
 corrections to the solution components.

 II. PARAMETERS ..

 The user should use parameter names in the call sequence of CDRIV1
 for those quantities whose value may be altered by CDRIV1. The
 parameters in the call sequence are:

 N = (Input) The number of differential equations, N .LE. 200

 T = (Real) The independent variable. On input for the first
 call, T is the initial point. On output, T is the point
 at which the solution is given.

 Y = (Complex) The vector of dependent variables. Y is used as
 input on the first call, to set the initial values. On
 output, Y is the computed solution vector. This array Y
 is passed in the call sequence of the user-provided
 routine F. Thus parameters required by F can be stored in
 this array in components N+1 and above. (Note: Changes by
 the user to the first N components of this array will take
 effect only after a restart, i.e., after setting MSTATE to
 +1(-1).)

 F = A subroutine supplied by the user. The name must be
 declared EXTERNAL in the user's calling program. This
 subroutine is of the form:
 SUBROUTINE F (N, T, Y, YDOT)
 COMPLEX Y(*), YDOT(*)
 .
 .
 YDOT(1) = ...
 .
 .
 YDOT(N) = ...
 END (Sample)
 This computes YDOT = F(Y,T), the right hand side of the
 differential equations. Here Y is a vector of length at
 least N. The actual length of Y is determined by the

SLATEC2 (AAAAAA through D9UPAK) - 175

 user's declaration in the program which calls CDRIV1.
 Thus the dimensioning of Y in F, while required by FORTRAN
 convention, does not actually allocate any storage. When
 this subroutine is called, the first N components of Y are
 intermediate approximations to the solution components.
 The user should not alter these values. Here YDOT is a
 vector of length N. The user should only compute YDOT(I)
 for I from 1 to N. Normally a return from F passes
 control back to CDRIV1. However, if the user would like
 to abort the calculation, i.e., return control to the
 program which calls CDRIV1, he should set N to zero.
 CDRIV1 will signal this by returning a value of MSTATE
 equal to +5(-5). Altering the value of N in F has no
 effect on the value of N in the call sequence of CDRIV1.

 TOUT = (Input, Real) The point at which the solution is desired.

 MSTATE = An integer describing the status of integration. The user
 must initialize MSTATE to +1 or -1. If MSTATE is
 positive, the routine will integrate past TOUT and
 interpolate the solution. This is the most efficient
 mode. If MSTATE is negative, the routine will adjust its
 internal step to reach TOUT exactly (useful if a
 singularity exists beyond TOUT.) The meaning of the
 magnitude of MSTATE:
 1 (Input) Means the first call to the routine. This
 value must be set by the user. On all subsequent
 calls the value of MSTATE should be tested by the
 user. Unless CDRIV1 is to be reinitialized, only the
 sign of MSTATE may be changed by the user. (As a
 convenience to the user who may wish to put out the
 initial conditions, CDRIV1 can be called with
 MSTATE=+1(-1), and TOUT=T. In this case the program
 will return with MSTATE unchanged, i.e.,
 MSTATE=+1(-1).)
 2 (Output) Means a successful integration. If a normal
 continuation is desired (i.e., a further integration
 in the same direction), simply advance TOUT and call
 again. All other parameters are automatically set.
 3 (Output)(Unsuccessful) Means the integrator has taken
 1000 steps without reaching TOUT. The user can
 continue the integration by simply calling CDRIV1
 again.
 4 (Output)(Unsuccessful) Means too much accuracy has
 been requested. EPS has been increased to a value
 the program estimates is appropriate. The user can
 continue the integration by simply calling CDRIV1
 again.
 5 (Output)(Unsuccessful) N has been set to zero in
 SUBROUTINE F.
 6 (Output)(Successful) For MSTATE negative, T is beyond
 TOUT. The solution was obtained by interpolation.
 The user can continue the integration by simply
 advancing TOUT and calling CDRIV1 again.
 7 (Output)(Unsuccessful) The solution could not be
 obtained. The value of IERFLG (see description
 below) for a "Recoverable" situation indicates the
 type of difficulty encountered: either an illegal
 value for a parameter or an inability to continue the
 solution. For this condition the user should take

SLATEC2 (AAAAAA through D9UPAK) - 176

 corrective action and reset MSTATE to +1(-1) before
 calling CDRIV1 again. Otherwise the program will
 terminate the run.

 EPS = (Real) On input, the requested relative accuracy in all
 solution components. On output, the adjusted relative
 accuracy if the input value was too small. The value of
 EPS should be set as large as is reasonable, because the
 amount of work done by CDRIV1 increases as EPS decreases.

 WORK
 LENW = (Input)
 WORK is an array of LENW complex words used
 internally for temporary storage. The user must allocate
 space for this array in the calling program by a statement
 such as
 COMPLEX WORK(...)
 The length of WORK should be at least N*N + 11*N + 300
 and LENW should be set to the value used. The contents of
 WORK should not be disturbed between calls to CDRIV1.

 IERFLG = An error flag. The error number associated with a
 diagnostic message (see Section IV-A below) is the same as
 the corresponding value of IERFLG. The meaning of IERFLG:
 0 The routine completed successfully. (No message is
 issued.)
 3 (Warning) The number of steps required to reach TOUT
 exceeds 1000 .
 4 (Warning) The value of EPS is too small.
 11 (Warning) For MSTATE negative, T is beyond TOUT.
 The solution was obtained by interpolation.
 15 (Warning) The integration step size is below the
 roundoff level of T. (The program issues this
 message as a warning but does not return control to
 the user.)
 21 (Recoverable) N is greater than 200 .
 22 (Recoverable) N is not positive.
 26 (Recoverable) The magnitude of MSTATE is either 0 or
 greater than 7 .
 27 (Recoverable) EPS is less than zero.
 32 (Recoverable) Insufficient storage has been allocated
 for the WORK array.
 41 (Recoverable) The integration step size has gone
 to zero.
 42 (Recoverable) The integration step size has been
 reduced about 50 times without advancing the
 solution. The problem setup may not be correct.
 999 (Fatal) The magnitude of MSTATE is 7 .

 III. USAGE ..

 PROGRAM SAMPLE
 EXTERNAL F
 COMPLEX ALFA
 REAL EPS, T, TOUT
 C N is the number of equations
 PARAMETER(ALFA = (1.E0, 1.E0), N = 3,
 8 LENW = N*N + 11*N + 300)
 COMPLEX WORK(LENW), Y(N+1)
 C Initial point

SLATEC2 (AAAAAA through D9UPAK) - 177

 T = 0.00001E0
 C Set initial conditions
 Y(1) = 10.E0
 Y(2) = 0.E0
 Y(3) = 10.E0
 C Pass parameter
 Y(4) = ALFA
 TOUT = T
 MSTATE = 1
 EPS = .001E0
 10 CALL CDRIV1 (N, T, Y, F, TOUT, MSTATE, EPS, WORK, LENW,
 8 IERFLG)
 IF (MSTATE .GT. 2) STOP
 WRITE(*, '(5E12.3)') TOUT, (Y(I), I=1,3)
 TOUT = 10.E0*TOUT
 IF (TOUT .LT. 50.E0) GO TO 10
 END

 SUBROUTINE F (N, T, Y, YDOT)
 COMPLEX ALFA, Y(*), YDOT(*)
 REAL T
 ALFA = Y(N+1)
 YDOT(1) = 1.E0 + ALFA*(Y(2) - Y(1)) - Y(1)*Y(3)
 YDOT(2) = ALFA*(Y(1) - Y(2)) - Y(2)*Y(3)
 YDOT(3) = 1.E0 - Y(3)*(Y(1) + Y(2))
 END

 IV. OTHER COMMUNICATION TO THE USER

 A. The solver communicates to the user through the parameters
 above. In addition it writes diagnostic messages through the
 standard error handling program XERMSG. A complete description
 of XERMSG is given in "Guide to the SLATEC Common Mathematical
 Library" by Kirby W. Fong et al.. At installations which do not
 have this error handling package the short but serviceable
 routine, XERMSG, available with this package, can be used. That
 program uses the file named OUTPUT to transmit messages.

 B. The number of evaluations of the right hand side can be found
 in the WORK array in the location determined by:
 LENW - (N + 50) + 4

 V. REMARKS ..

 For other information, see Section IV of the writeup for CDRIV3.

 ***REFERENCES C. W. Gear, Numerical Initial Value Problems in
 Ordinary Differential Equations, Prentice-Hall, 1971.
 ***ROUTINES CALLED CDRIV3, XERMSG
 ***REVISION HISTORY (YYMMDD)
 790601 DATE WRITTEN
 900329 Initial submission to SLATEC.
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 178

CDRIV2

 SUBROUTINE CDRIV2 (N, T, Y, F, TOUT, MSTATE, NROOT, EPS, EWT,
 8 MINT, WORK, LENW, IWORK, LENIW, G, IERFLG)
 ***BEGIN PROLOGUE CDRIV2
 ***PURPOSE The function of CDRIV2 is to solve N ordinary differential
 equations of the form dY(I)/dT = F(Y(I),T), given the
 initial conditions Y(I) = YI. The program has options to
 allow the solution of both stiff and non-stiff differential
 equations. CDRIV2 allows complex-valued differential
 equations.
 ***LIBRARY SLATEC (SDRIVE)
 ***CATEGORY I1A2, I1A1B
 ***TYPE COMPLEX (SDRIV2-S, DDRIV2-D, CDRIV2-C)
 ***KEYWORDS COMPLEX VALUED, GEAR'S METHOD, INITIAL VALUE PROBLEMS,
 ODE, ORDINARY DIFFERENTIAL EQUATIONS, SDRIVE, STIFF
 ***AUTHOR Kahaner, D. K., (NIST)
 National Institute of Standards and Technology
 Gaithersburg, MD 20899
 Sutherland, C. D., (LANL)
 Mail Stop D466
 Los Alamos National Laboratory
 Los Alamos, NM 87545
 ***DESCRIPTION

 I. PARAMETERS ...

 The user should use parameter names in the call sequence of CDRIV2
 for those quantities whose value may be altered by CDRIV2. The
 parameters in the call sequence are:

 N = (Input) The number of differential equations.

 T = (Real) The independent variable. On input for the first
 call, T is the initial point. On output, T is the point
 at which the solution is given.

 Y = (Complex) The vector of dependent variables. Y is used as
 input on the first call, to set the initial values. On
 output, Y is the computed solution vector. This array Y
 is passed in the call sequence of the user-provided
 routines F and G. Thus parameters required by F and G can
 be stored in this array in components N+1 and above.
 (Note: Changes by the user to the first N components of
 this array will take effect only after a restart, i.e.,
 after setting MSTATE to +1(-1).)

 F = A subroutine supplied by the user. The name must be
 declared EXTERNAL in the user's calling program. This
 subroutine is of the form:
 SUBROUTINE F (N, T, Y, YDOT)
 COMPLEX Y(*), YDOT(*)
 .
 .
 YDOT(1) = ...
 .
 .
 YDOT(N) = ...

SLATEC2 (AAAAAA through D9UPAK) - 179

 END (Sample)
 This computes YDOT = F(Y,T), the right hand side of the
 differential equations. Here Y is a vector of length at
 least N. The actual length of Y is determined by the
 user's declaration in the program which calls CDRIV2.
 Thus the dimensioning of Y in F, while required by FORTRAN
 convention, does not actually allocate any storage. When
 this subroutine is called, the first N components of Y are
 intermediate approximations to the solution components.
 The user should not alter these values. Here YDOT is a
 vector of length N. The user should only compute YDOT(I)
 for I from 1 to N. Normally a return from F passes
 control back to CDRIV2. However, if the user would like
 to abort the calculation, i.e., return control to the
 program which calls CDRIV2, he should set N to zero.
 CDRIV2 will signal this by returning a value of MSTATE
 equal to +6(-6). Altering the value of N in F has no
 effect on the value of N in the call sequence of CDRIV2.

 TOUT = (Input, Real) The point at which the solution is desired.

 MSTATE = An integer describing the status of integration. The user
 must initialize MSTATE to +1 or -1. If MSTATE is
 positive, the routine will integrate past TOUT and
 interpolate the solution. This is the most efficient
 mode. If MSTATE is negative, the routine will adjust its
 internal step to reach TOUT exactly (useful if a
 singularity exists beyond TOUT.) The meaning of the
 magnitude of MSTATE:
 1 (Input) Means the first call to the routine. This
 value must be set by the user. On all subsequent
 calls the value of MSTATE should be tested by the
 user. Unless CDRIV2 is to be reinitialized, only the
 sign of MSTATE may be changed by the user. (As a
 convenience to the user who may wish to put out the
 initial conditions, CDRIV2 can be called with
 MSTATE=+1(-1), and TOUT=T. In this case the program
 will return with MSTATE unchanged, i.e.,
 MSTATE=+1(-1).)
 2 (Output) Means a successful integration. If a normal
 continuation is desired (i.e., a further integration
 in the same direction), simply advance TOUT and call
 again. All other parameters are automatically set.
 3 (Output)(Unsuccessful) Means the integrator has taken
 1000 steps without reaching TOUT. The user can
 continue the integration by simply calling CDRIV2
 again. Other than an error in problem setup, the
 most likely cause for this condition is trying to
 integrate a stiff set of equations with the non-stiff
 integrator option. (See description of MINT below.)
 4 (Output)(Unsuccessful) Means too much accuracy has
 been requested. EPS has been increased to a value
 the program estimates is appropriate. The user can
 continue the integration by simply calling CDRIV2
 again.
 5 (Output) A root was found at a point less than TOUT.
 The user can continue the integration toward TOUT by
 simply calling CDRIV2 again.
 6 (Output)(Unsuccessful) N has been set to zero in
 SUBROUTINE F.

SLATEC2 (AAAAAA through D9UPAK) - 180

 7 (Output)(Unsuccessful) N has been set to zero in
 FUNCTION G. See description of G below.
 8 (Output)(Successful) For MSTATE negative, T is beyond
 TOUT. The solution was obtained by interpolation.
 The user can continue the integration by simply
 advancing TOUT and calling CDRIV2 again.
 9 (Output)(Unsuccessful) The solution could not be
 obtained. The value of IERFLG (see description
 below) for a "Recoverable" situation indicates the
 type of difficulty encountered: either an illegal
 value for a parameter or an inability to continue the
 solution. For this condition the user should take
 corrective action and reset MSTATE to +1(-1) before
 calling CDRIV2 again. Otherwise the program will
 terminate the run.

 NROOT = (Input) The number of equations whose roots are desired.
 If NROOT is zero, the root search is not active. This
 option is useful for obtaining output at points which are
 not known in advance, but depend upon the solution, e.g.,
 when some solution component takes on a specified value.
 The root search is carried out using the user-written
 function G (see description of G below.) CDRIV2 attempts
 to find the value of T at which one of the equations
 changes sign. CDRIV2 can find at most one root per
 equation per internal integration step, and will then
 return the solution either at TOUT or at a root, whichever
 occurs first in the direction of integration. The initial
 point is never reported as a root. The index of the
 equation whose root is being reported is stored in the
 sixth element of IWORK.
 NOTE: NROOT is never altered by this program.

 EPS = (Real) On input, the requested relative accuracy in all
 solution components. EPS = 0 is allowed. On output, the
 adjusted relative accuracy if the input value was too
 small. The value of EPS should be set as large as is
 reasonable, because the amount of work done by CDRIV2
 increases as EPS decreases.

 EWT = (Input, Real) Problem zero, i.e., the smallest physically
 meaningful value for the solution. This is used inter-
 nally to compute an array YWT(I) = MAX(ABS(Y(I)), EWT).
 One step error estimates divided by YWT(I) are kept less
 than EPS. Setting EWT to zero provides pure relative
 error control. However, setting EWT smaller than
 necessary can adversely affect the running time.

 MINT = (Input) The integration method flag.
 MINT = 1 Means the Adams methods, and is used for
 non-stiff problems.
 MINT = 2 Means the stiff methods of Gear (i.e., the
 backward differentiation formulas), and is
 used for stiff problems.
 MINT = 3 Means the program dynamically selects the
 Adams methods when the problem is non-stiff
 and the Gear methods when the problem is
 stiff.
 MINT may not be changed without restarting, i.e., setting
 the magnitude of MSTATE to 1.

SLATEC2 (AAAAAA through D9UPAK) - 181

 WORK
 LENW = (Input)
 WORK is an array of LENW complex words used
 internally for temporary storage. The user must allocate
 space for this array in the calling program by a statement
 such as
 COMPLEX WORK(...)
 The length of WORK should be at least
 16*N + 2*NROOT + 250 if MINT is 1, or
 N*N + 10*N + 2*NROOT + 250 if MINT is 2, or
 N*N + 17*N + 2*NROOT + 250 if MINT is 3,
 and LENW should be set to the value used. The contents of
 WORK should not be disturbed between calls to CDRIV2.

 IWORK
 LENIW = (Input)
 IWORK is an integer array of length LENIW used internally
 for temporary storage. The user must allocate space for
 this array in the calling program by a statement such as
 INTEGER IWORK(...)
 The length of IWORK should be at least
 50 if MINT is 1, or
 N+50 if MINT is 2 or 3,
 and LENIW should be set to the value used. The contents
 of IWORK should not be disturbed between calls to CDRIV2.

 G = A real FORTRAN function supplied by the user
 if NROOT is not 0. In this case, the name must be
 declared EXTERNAL in the user's calling program. G is
 repeatedly called with different values of IROOT to
 obtain the value of each of the NROOT equations for which
 a root is desired. G is of the form:
 REAL FUNCTION G (N, T, Y, IROOT)
 COMPLEX Y(*)
 GO TO (10, ...), IROOT
 10 G = ...
 .
 .
 END (Sample)
 Here, Y is a vector of length at least N, whose first N
 components are the solution components at the point T.
 The user should not alter these values. The actual length
 of Y is determined by the user's declaration in the
 program which calls CDRIV2. Thus the dimensioning of Y in
 G, while required by FORTRAN convention, does not actually
 allocate any storage. Normally a return from G passes
 control back to CDRIV2. However, if the user would like
 to abort the calculation, i.e., return control to the
 program which calls CDRIV2, he should set N to zero.
 CDRIV2 will signal this by returning a value of MSTATE
 equal to +7(-7). In this case, the index of the equation
 being evaluated is stored in the sixth element of IWORK.
 Altering the value of N in G has no effect on the value of
 N in the call sequence of CDRIV2.

 IERFLG = An error flag. The error number associated with a
 diagnostic message (see Section II-A below) is the same as
 the corresponding value of IERFLG. The meaning of IERFLG:
 0 The routine completed successfully. (No message is

SLATEC2 (AAAAAA through D9UPAK) - 182

 issued.)
 3 (Warning) The number of steps required to reach TOUT
 exceeds MXSTEP.
 4 (Warning) The value of EPS is too small.
 11 (Warning) For MSTATE negative, T is beyond TOUT.
 The solution was obtained by interpolation.
 15 (Warning) The integration step size is below the
 roundoff level of T. (The program issues this
 message as a warning but does not return control to
 the user.)
 22 (Recoverable) N is not positive.
 23 (Recoverable) MINT is less than 1 or greater than 3 .
 26 (Recoverable) The magnitude of MSTATE is either 0 or
 greater than 9 .
 27 (Recoverable) EPS is less than zero.
 32 (Recoverable) Insufficient storage has been allocated
 for the WORK array.
 33 (Recoverable) Insufficient storage has been allocated
 for the IWORK array.
 41 (Recoverable) The integration step size has gone
 to zero.
 42 (Recoverable) The integration step size has been
 reduced about 50 times without advancing the
 solution. The problem setup may not be correct.
 999 (Fatal) The magnitude of MSTATE is 9 .

 II. OTHER COMMUNICATION TO THE USER

 A. The solver communicates to the user through the parameters
 above. In addition it writes diagnostic messages through the
 standard error handling program XERMSG. A complete description
 of XERMSG is given in "Guide to the SLATEC Common Mathematical
 Library" by Kirby W. Fong et al.. At installations which do not
 have this error handling package the short but serviceable
 routine, XERMSG, available with this package, can be used. That
 program uses the file named OUTPUT to transmit messages.

 B. The first three elements of WORK and the first five elements of
 IWORK will contain the following statistical data:
 AVGH The average step size used.
 HUSED The step size last used (successfully).
 AVGORD The average order used.
 IMXERR The index of the element of the solution vector that
 contributed most to the last error test.
 NQUSED The order last used (successfully).
 NSTEP The number of steps taken since last initialization.
 NFE The number of evaluations of the right hand side.
 NJE The number of evaluations of the Jacobian matrix.

 III. REMARKS ..

 A. On any return from CDRIV2 all information necessary to continue
 the calculation is contained in the call sequence parameters,
 including the work arrays. Thus it is possible to suspend one
 problem, integrate another, and then return to the first.

 B. If this package is to be used in an overlay situation, the user
 must declare in the primary overlay the variables in the call
 sequence to CDRIV2.

SLATEC2 (AAAAAA through D9UPAK) - 183

 C. When the routine G is not required, difficulties associated with
 an unsatisfied external can be avoided by using the name of the
 routine which calculates the right hand side of the differential
 equations in place of G in the call sequence of CDRIV2.

 IV. USAGE ...

 PROGRAM SAMPLE
 EXTERNAL F
 PARAMETER(MINT = 1, NROOT = 0, N = ...,
 8 LENW = 16*N + 2*NROOT + 250, LENIW = 50)
 C N is the number of equations
 COMPLEX WORK(LENW), Y(N)
 REAL EPS, EWT, T, TOUT
 INTEGER IWORK(LENIW)
 OPEN(FILE='TAPE6', UNIT=6, STATUS='NEW')
 C Initial point
 T = 0.
 C Set initial conditions
 DO 10 I = 1,N
 10 Y(I) = ...
 TOUT = T
 EWT = ...
 MSTATE = 1
 EPS = ...
 20 CALL CDRIV2 (N, T, Y, F, TOUT, MSTATE, NROOT, EPS, EWT,
 8 MINT, WORK, LENW, IWORK, LENIW, F, IERFLG)
 C Next to last argument is not
 C F if rootfinding is used.
 IF (MSTATE .GT. 2) STOP
 WRITE(6, 100) TOUT, (Y(I), I=1,N)
 TOUT = TOUT + 1.
 IF (TOUT .LE. 10.) GO TO 20
 100 FORMAT(...)
 END (Sample)

 ***REFERENCES C. W. Gear, Numerical Initial Value Problems in
 Ordinary Differential Equations, Prentice-Hall, 1971.
 ***ROUTINES CALLED CDRIV3, XERMSG
 ***REVISION HISTORY (YYMMDD)
 790601 DATE WRITTEN
 900329 Initial submission to SLATEC.
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 184

CDRIV3

 SUBROUTINE CDRIV3 (N, T, Y, F, NSTATE, TOUT, NTASK, NROOT, EPS,
 8 EWT, IERROR, MINT, MITER, IMPL, ML, MU, MXORD, HMAX, WORK,
 8 LENW, IWORK, LENIW, JACOBN, FA, NDE, MXSTEP, G, USERS, IERFLG)
 ***BEGIN PROLOGUE CDRIV3
 ***PURPOSE The function of CDRIV3 is to solve N ordinary differential
 equations of the form dY(I)/dT = F(Y(I),T), given the
 initial conditions Y(I) = YI. The program has options to
 allow the solution of both stiff and non-stiff differential
 equations. Other important options are available. CDRIV3
 allows complex-valued differential equations.
 ***LIBRARY SLATEC (SDRIVE)
 ***CATEGORY I1A2, I1A1B
 ***TYPE COMPLEX (SDRIV3-S, DDRIV3-D, CDRIV3-C)
 ***KEYWORDS COMPLEX VALUED, GEAR'S METHOD, INITIAL VALUE PROBLEMS,
 ODE, ORDINARY DIFFERENTIAL EQUATIONS, SDRIVE, STIFF
 ***AUTHOR Kahaner, D. K., (NIST)
 National Institute of Standards and Technology
 Gaithersburg, MD 20899
 Sutherland, C. D., (LANL)
 Mail Stop D466
 Los Alamos National Laboratory
 Los Alamos, NM 87545
 ***DESCRIPTION

 I. ABSTRACT ...

 The primary function of CDRIV3 is to solve N ordinary differential
 equations of the form dY(I)/dT = F(Y(I),T), given the initial
 conditions Y(I) = YI. The program has options to allow the
 solution of both stiff and non-stiff differential equations. In
 addition, CDRIV3 may be used to solve:
 1. The initial value problem, A*dY(I)/dT = F(Y(I),T), where A is
 a non-singular matrix depending on Y and T.
 2. The hybrid differential/algebraic initial value problem,
 A*dY(I)/dT = F(Y(I),T), where A is a vector (whose values may
 depend upon Y and T) some of whose components will be zero
 corresponding to those equations which are algebraic rather
 than differential.
 CDRIV3 is to be called once for each output point of T.

 II. PARAMETERS ..

 The user should use parameter names in the call sequence of CDRIV3
 for those quantities whose value may be altered by CDRIV3. The
 parameters in the call sequence are:

 N = (Input) The number of dependent functions whose solution
 is desired. N must not be altered during a problem.

 T = (Real) The independent variable. On input for the first
 call, T is the initial point. On output, T is the point
 at which the solution is given.

 Y = (Complex) The vector of dependent variables. Y is used as
 input on the first call, to set the initial values. On
 output, Y is the computed solution vector. This array Y

SLATEC2 (AAAAAA through D9UPAK) - 185

 is passed in the call sequence of the user-provided
 routines F, JACOBN, FA, USERS, and G. Thus parameters
 required by those routines can be stored in this array in
 components N+1 and above. (Note: Changes by the user to
 the first N components of this array will take effect only
 after a restart, i.e., after setting NSTATE to 1 .)

 F = A subroutine supplied by the user. The name must be
 declared EXTERNAL in the user's calling program. This
 subroutine is of the form:
 SUBROUTINE F (N, T, Y, YDOT)
 COMPLEX Y(*), YDOT(*)
 .
 .
 YDOT(1) = ...
 .
 .
 YDOT(N) = ...
 END (Sample)
 This computes YDOT = F(Y,T), the right hand side of the
 differential equations. Here Y is a vector of length at
 least N. The actual length of Y is determined by the
 user's declaration in the program which calls CDRIV3.
 Thus the dimensioning of Y in F, while required by FORTRAN
 convention, does not actually allocate any storage. When
 this subroutine is called, the first N components of Y are
 intermediate approximations to the solution components.
 The user should not alter these values. Here YDOT is a
 vector of length N. The user should only compute YDOT(I)
 for I from 1 to N. Normally a return from F passes
 control back to CDRIV3. However, if the user would like
 to abort the calculation, i.e., return control to the
 program which calls CDRIV3, he should set N to zero.
 CDRIV3 will signal this by returning a value of NSTATE
 equal to 6 . Altering the value of N in F has no effect
 on the value of N in the call sequence of CDRIV3.

 NSTATE = An integer describing the status of integration. The
 meaning of NSTATE is as follows:
 1 (Input) Means the first call to the routine. This
 value must be set by the user. On all subsequent
 calls the value of NSTATE should be tested by the
 user, but must not be altered. (As a convenience to
 the user who may wish to put out the initial
 conditions, CDRIV3 can be called with NSTATE=1, and
 TOUT=T. In this case the program will return with
 NSTATE unchanged, i.e., NSTATE=1.)
 2 (Output) Means a successful integration. If a normal
 continuation is desired (i.e., a further integration
 in the same direction), simply advance TOUT and call
 again. All other parameters are automatically set.
 3 (Output)(Unsuccessful) Means the integrator has taken
 MXSTEP steps without reaching TOUT. The user can
 continue the integration by simply calling CDRIV3
 again.
 4 (Output)(Unsuccessful) Means too much accuracy has
 been requested. EPS has been increased to a value
 the program estimates is appropriate. The user can
 continue the integration by simply calling CDRIV3
 again.

SLATEC2 (AAAAAA through D9UPAK) - 186

 5 (Output) A root was found at a point less than TOUT.
 The user can continue the integration toward TOUT by
 simply calling CDRIV3 again.
 6 (Output)(Unsuccessful) N has been set to zero in
 SUBROUTINE F.
 7 (Output)(Unsuccessful) N has been set to zero in
 FUNCTION G. See description of G below.
 8 (Output)(Unsuccessful) N has been set to zero in
 SUBROUTINE JACOBN. See description of JACOBN below.
 9 (Output)(Unsuccessful) N has been set to zero in
 SUBROUTINE FA. See description of FA below.
 10 (Output)(Unsuccessful) N has been set to zero in
 SUBROUTINE USERS. See description of USERS below.
 11 (Output)(Successful) For NTASK = 2 or 3, T is beyond
 TOUT. The solution was obtained by interpolation.
 The user can continue the integration by simply
 advancing TOUT and calling CDRIV3 again.
 12 (Output)(Unsuccessful) The solution could not be
 obtained. The value of IERFLG (see description
 below) for a "Recoverable" situation indicates the
 type of difficulty encountered: either an illegal
 value for a parameter or an inability to continue the
 solution. For this condition the user should take
 corrective action and reset NSTATE to 1 before
 calling CDRIV3 again. Otherwise the program will
 terminate the run.

 TOUT = (Input, Real) The point at which the solution is desired.
 The position of TOUT relative to T on the first call
 determines the direction of integration.

 NTASK = (Input) An index specifying the manner of returning the
 solution, according to the following:
 NTASK = 1 Means CDRIV3 will integrate past TOUT and
 interpolate the solution. This is the most
 efficient mode.
 NTASK = 2 Means CDRIV3 will return the solution after
 each internal integration step, or at TOUT,
 whichever comes first. In the latter case,
 the program integrates exactly to TOUT.
 NTASK = 3 Means CDRIV3 will adjust its internal step to
 reach TOUT exactly (useful if a singularity
 exists beyond TOUT.)

 NROOT = (Input) The number of equations whose roots are desired.
 If NROOT is zero, the root search is not active. This
 option is useful for obtaining output at points which are
 not known in advance, but depend upon the solution, e.g.,
 when some solution component takes on a specified value.
 The root search is carried out using the user-written
 function G (see description of G below.) CDRIV3 attempts
 to find the value of T at which one of the equations
 changes sign. CDRIV3 can find at most one root per
 equation per internal integration step, and will then
 return the solution either at TOUT or at a root, whichever
 occurs first in the direction of integration. The initial
 point is never reported as a root. The index of the
 equation whose root is being reported is stored in the
 sixth element of IWORK.
 NOTE: NROOT is never altered by this program.

SLATEC2 (AAAAAA through D9UPAK) - 187

 EPS = (Real) On input, the requested relative accuracy in all
 solution components. EPS = 0 is allowed. On output, the
 adjusted relative accuracy if the input value was too
 small. The value of EPS should be set as large as is
 reasonable, because the amount of work done by CDRIV3
 increases as EPS decreases.

 EWT = (Input, Real) Problem zero, i.e., the smallest, nonzero,
 physically meaningful value for the solution. (Array,
 possibly of length one. See following description of
 IERROR.) Setting EWT smaller than necessary can adversely
 affect the running time.

 IERROR = (Input) Error control indicator. A value of 3 is
 suggested for most problems. Other choices and detailed
 explanations of EWT and IERROR are given below for those
 who may need extra flexibility.

 These last three input quantities EPS, EWT and IERROR
 control the accuracy of the computed solution. EWT and
 IERROR are used internally to compute an array YWT. One
 step error estimates divided by YWT(I) are kept less than
 EPS in root mean square norm.
 IERROR (Set by the user) =
 1 Means YWT(I) = 1. (Absolute error control)
 EWT is ignored.
 2 Means YWT(I) = ABS(Y(I)), (Relative error control)
 EWT is ignored.
 3 Means YWT(I) = MAX(ABS(Y(I)), EWT(1)).
 4 Means YWT(I) = MAX(ABS(Y(I)), EWT(I)).
 This choice is useful when the solution components
 have differing scales.
 5 Means YWT(I) = EWT(I).
 If IERROR is 3, EWT need only be dimensioned one.
 If IERROR is 4 or 5, the user must dimension EWT at least
 N, and set its values.

 MINT = (Input) The integration method indicator.
 MINT = 1 Means the Adams methods, and is used for
 non-stiff problems.
 MINT = 2 Means the stiff methods of Gear (i.e., the
 backward differentiation formulas), and is
 used for stiff problems.
 MINT = 3 Means the program dynamically selects the
 Adams methods when the problem is non-stiff
 and the Gear methods when the problem is
 stiff. When using the Adams methods, the
 program uses a value of MITER=0; when using
 the Gear methods, the program uses the value
 of MITER provided by the user. Only a value
 of IMPL = 0 and a value of MITER = 1, 2, 4, or
 5 is allowed for this option. The user may
 not alter the value of MINT or MITER without
 restarting, i.e., setting NSTATE to 1.

 MITER = (Input) The iteration method indicator.
 MITER = 0 Means functional iteration. This value is
 suggested for non-stiff problems.
 MITER = 1 Means chord method with analytic Jacobian.

SLATEC2 (AAAAAA through D9UPAK) - 188

 In this case, the user supplies subroutine
 JACOBN (see description below).
 MITER = 2 Means chord method with Jacobian calculated
 internally by finite differences.
 MITER = 3 Means chord method with corrections computed
 by the user-written routine USERS (see
 description of USERS below.) This option
 allows all matrix algebra and storage
 decisions to be made by the user. When using
 a value of MITER = 3, the subroutine FA is
 not required, even if IMPL is not 0. For
 further information on using this option, see
 Section IV-E below.
 MITER = 4 Means the same as MITER = 1 but the A and
 Jacobian matrices are assumed to be banded.
 MITER = 5 Means the same as MITER = 2 but the A and
 Jacobian matrices are assumed to be banded.

 IMPL = (Input) The implicit method indicator.
 IMPL = 0 Means solving dY(I)/dT = F(Y(I),T).
 IMPL = 1 Means solving A*dY(I)/dT = F(Y(I),T), non-
 singular A (see description of FA below.)
 Only MINT = 1 or 2, and MITER = 1, 2, 3, 4,
 or 5 are allowed for this option.
 IMPL = 2,3 Means solving certain systems of hybrid
 differential/algebraic equations (see
 description of FA below.) Only MINT = 2 and
 MITER = 1, 2, 3, 4, or 5, are allowed for
 this option.
 The value of IMPL must not be changed during a problem.

 ML = (Input) The lower half-bandwidth in the case of a banded
 A or Jacobian matrix. (I.e., maximum(R-C) for nonzero
 A(R,C).)

 MU = (Input) The upper half-bandwidth in the case of a banded
 A or Jacobian matrix. (I.e., maximum(C-R).)

 MXORD = (Input) The maximum order desired. This is .LE. 12 for
 the Adams methods and .LE. 5 for the Gear methods. Normal
 value is 12 and 5, respectively. If MINT is 3, the
 maximum order used will be MIN(MXORD, 12) when using the
 Adams methods, and MIN(MXORD, 5) when using the Gear
 methods. MXORD must not be altered during a problem.

 HMAX = (Input, Real) The maximum magnitude of the step size that
 will be used for the problem. This is useful for ensuring
 that important details are not missed. If this is not the
 case, a large value, such as the interval length, is
 suggested.

 WORK
 LENW = (Input)
 WORK is an array of LENW complex words used
 internally for temporary storage. The user must allocate
 space for this array in the calling program by a statement
 such as
 COMPLEX WORK(...)
 The following table gives the required minimum value for
 the length of WORK, depending on the value of IMPL and

SLATEC2 (AAAAAA through D9UPAK) - 189

 MITER. LENW should be set to the value used. The
 contents of WORK should not be disturbed between calls to
 CDRIV3.

 IMPL = 0 1 2 3

 MITER = 0 (MXORD+4)*N Not allowed Not allowed Not allowed
 + 2*NROOT
 + 250

 1,2 N*N + 2*N*N + N*N + N*(N + NDE)
 (MXORD+5)*N (MXORD+5)*N (MXORD+6)*N + (MXORD+5)*N
 + 2*NROOT + 2*NROOT + 2*NROOT + 2*NROOT
 + 250 + 250 + 250 + 250

 3 (MXORD+4)*N (MXORD+4)*N (MXORD+4)*N (MXORD+4)*N
 + 2*NROOT + 2*NROOT + 2*NROOT + 2*NROOT
 + 250 + 250 + 250 + 250

 4,5 (2*ML+MU+1) 2*(2*ML+MU+1) (2*ML+MU+1) (2*ML+MU+1)*
 *N + *N + *N + (N+NDE) +
 (MXORD+5)*N (MXORD+5)*N (MXORD+6)*N + (MXORD+5)*N
 + 2*NROOT + 2*NROOT + 2*NROOT + 2*NROOT
 + 250 + 250 + 250 + 250

 IWORK
 LENIW = (Input)
 IWORK is an integer array of length LENIW used internally
 for temporary storage. The user must allocate space for
 this array in the calling program by a statement such as
 INTEGER IWORK(...)
 The length of IWORK should be at least
 50 if MITER is 0 or 3, or
 N+50 if MITER is 1, 2, 4, or 5, or MINT is 3,
 and LENIW should be set to the value used. The contents
 of IWORK should not be disturbed between calls to CDRIV3.

 JACOBN = A subroutine supplied by the user, if MITER is 1 or 4.
 If this is the case, the name must be declared EXTERNAL in
 the user's calling program. Given a system of N
 differential equations, it is meaningful to speak about
 the partial derivative of the I-th right hand side with
 respect to the J-th dependent variable. In general there
 are N*N such quantities. Often however the equations can
 be ordered so that the I-th differential equation only
 involves dependent variables with index near I, e.g., I+1,
 I-2. Such a system is called banded. If, for all I, the
 I-th equation depends on at most the variables
 Y(I-ML), Y(I-ML+1), ... , Y(I), Y(I+1), ... , Y(I+MU)
 then we call ML+MU+1 the bandwidth of the system. In a
 banded system many of the partial derivatives above are
 automatically zero. For the cases MITER = 1, 2, 4, and 5,
 some of these partials are needed. For the cases
 MITER = 2 and 5 the necessary derivatives are
 approximated numerically by CDRIV3, and we only ask the
 user to tell CDRIV3 the value of ML and MU if the system
 is banded. For the cases MITER = 1 and 4 the user must
 derive these partials algebraically and encode them in
 subroutine JACOBN. By computing these derivatives the

SLATEC2 (AAAAAA through D9UPAK) - 190

 user can often save 20-30 per cent of the computing time.
 Usually, however, the accuracy is not much affected and
 most users will probably forego this option. The optional
 user-written subroutine JACOBN has the form:
 SUBROUTINE JACOBN (N, T, Y, DFDY, MATDIM, ML, MU)
 COMPLEX Y(*), DFDY(MATDIM,*)
 .
 .
 Calculate values of DFDY
 .
 .
 END (Sample)
 Here Y is a vector of length at least N. The actual
 length of Y is determined by the user's declaration in the
 program which calls CDRIV3. Thus the dimensioning of Y in
 JACOBN, while required by FORTRAN convention, does not
 actually allocate any storage. When this subroutine is
 called, the first N components of Y are intermediate
 approximations to the solution components. The user
 should not alter these values. If the system is not
 banded (MITER=1), the partials of the I-th equation with
 respect to the J-th dependent function are to be stored in
 DFDY(I,J). Thus partials of the I-th equation are stored
 in the I-th row of DFDY. If the system is banded
 (MITER=4), then the partials of the I-th equation with
 respect to Y(J) are to be stored in DFDY(K,J), where
 K=I-J+MU+1 . Normally a return from JACOBN passes control
 back to CDRIV3. However, if the user would like to abort
 the calculation, i.e., return control to the program which
 calls CDRIV3, he should set N to zero. CDRIV3 will signal
 this by returning a value of NSTATE equal to +8(-8).
 Altering the value of N in JACOBN has no effect on the
 value of N in the call sequence of CDRIV3.

 FA = A subroutine supplied by the user if IMPL is not zero, and
 MITER is not 3. If so, the name must be declared EXTERNAL
 in the user's calling program. This subroutine computes
 the array A, where A*dY(I)/dT = F(Y(I),T).
 There are three cases:

 IMPL=1.
 Subroutine FA is of the form:
 SUBROUTINE FA (N, T, Y, A, MATDIM, ML, MU, NDE)
 COMPLEX Y(*), A(MATDIM,*)
 .
 .
 Calculate ALL values of A
 .
 .
 END (Sample)
 In this case A is assumed to be a nonsingular matrix,
 with the same structure as DFDY (see JACOBN description
 above). Programming considerations prevent complete
 generality. If MITER is 1 or 2, A is assumed to be full
 and the user must compute and store all values of
 A(I,J), I,J=1, ... ,N. If MITER is 4 or 5, A is assumed
 to be banded with lower and upper half bandwidth ML and
 MU. The left hand side of the I-th equation is a linear
 combination of dY(I-ML)/dT, dY(I-ML+1)/dT, ... ,
 dY(I)/dT, ... , dY(I+MU-1)/dT, dY(I+MU)/dT. Thus in the

SLATEC2 (AAAAAA through D9UPAK) - 191

 I-th equation, the coefficient of dY(J)/dT is to be
 stored in A(K,J), where K=I-J+MU+1.
 NOTE: The array A will be altered between calls to FA.

 IMPL=2.
 Subroutine FA is of the form:
 SUBROUTINE FA (N, T, Y, A, MATDIM, ML, MU, NDE)
 COMPLEX Y(*), A(*)
 .
 .
 Calculate non-zero values of A(1),...,A(NDE)
 .
 .
 END (Sample)
 In this case it is assumed that the system is ordered by
 the user so that the differential equations appear
 first, and the algebraic equations appear last. The
 algebraic equations must be written in the form:
 0 = F(Y(I),T). When using this option it is up to the
 user to provide initial values for the Y(I) that satisfy
 the algebraic equations as well as possible. It is
 further assumed that A is a vector of length NDE. All
 of the components of A, which may depend on T, Y(I),
 etc., must be set by the user to non-zero values.

 IMPL=3.
 Subroutine FA is of the form:
 SUBROUTINE FA (N, T, Y, A, MATDIM, ML, MU, NDE)
 COMPLEX Y(*), A(MATDIM,*)
 .
 .
 Calculate ALL values of A
 .
 .
 END (Sample)
 In this case A is assumed to be a nonsingular NDE by NDE
 matrix with the same structure as DFDY (see JACOBN
 description above). Programming considerations prevent
 complete generality. If MITER is 1 or 2, A is assumed
 to be full and the user must compute and store all
 values of A(I,J), I,J=1, ... ,NDE. If MITER is 4 or 5,
 A is assumed to be banded with lower and upper half
 bandwidths ML and MU. The left hand side of the I-th
 equation is a linear combination of dY(I-ML)/dT,
 dY(I-ML+1)/dT, ... , dY(I)/dT, ... , dY(I+MU-1)/dT,
 dY(I+MU)/dT. Thus in the I-th equation, the coefficient
 of dY(J)/dT is to be stored in A(K,J), where K=I-J+MU+1.
 It is assumed that the system is ordered by the user so
 that the differential equations appear first, and the
 algebraic equations appear last. The algebraic
 equations must be written in the form 0 = F(Y(I),T).
 When using this option it is up to the user to provide
 initial values for the Y(I) that satisfy the algebraic
 equations as well as possible.
 NOTE: For IMPL = 3, the array A will be altered between
 calls to FA.
 Here Y is a vector of length at least N. The actual
 length of Y is determined by the user's declaration in the
 program which calls CDRIV3. Thus the dimensioning of Y in
 FA, while required by FORTRAN convention, does not

SLATEC2 (AAAAAA through D9UPAK) - 192

 actually allocate any storage. When this subroutine is
 called, the first N components of Y are intermediate
 approximations to the solution components. The user
 should not alter these values. FA is always called
 immediately after calling F, with the same values of T
 and Y. Normally a return from FA passes control back to
 CDRIV3. However, if the user would like to abort the
 calculation, i.e., return control to the program which
 calls CDRIV3, he should set N to zero. CDRIV3 will signal
 this by returning a value of NSTATE equal to +9(-9).
 Altering the value of N in FA has no effect on the value
 of N in the call sequence of CDRIV3.

 NDE = (Input) The number of differential equations. This is
 required only for IMPL = 2 or 3, with NDE .LT. N.

 MXSTEP = (Input) The maximum number of internal steps allowed on
 one call to CDRIV3.

 G = A real FORTRAN function supplied by the user
 if NROOT is not 0. In this case, the name must be
 declared EXTERNAL in the user's calling program. G is
 repeatedly called with different values of IROOT to obtain
 the value of each of the NROOT equations for which a root
 is desired. G is of the form:
 REAL FUNCTION G (N, T, Y, IROOT)
 COMPLEX Y(*)
 GO TO (10, ...), IROOT
 10 G = ...
 .
 .
 END (Sample)
 Here, Y is a vector of length at least N, whose first N
 components are the solution components at the point T.
 The user should not alter these values. The actual length
 of Y is determined by the user's declaration in the
 program which calls CDRIV3. Thus the dimensioning of Y in
 G, while required by FORTRAN convention, does not actually
 allocate any storage. Normally a return from G passes
 control back to CDRIV3. However, if the user would like
 to abort the calculation, i.e., return control to the
 program which calls CDRIV3, he should set N to zero.
 CDRIV3 will signal this by returning a value of NSTATE
 equal to +7(-7). In this case, the index of the equation
 being evaluated is stored in the sixth element of IWORK.
 Altering the value of N in G has no effect on the value of
 N in the call sequence of CDRIV3.

 USERS = A subroutine supplied by the user, if MITER is 3.
 If this is the case, the name must be declared EXTERNAL in
 the user's calling program. The routine USERS is called
 by CDRIV3 when certain linear systems must be solved. The
 user may choose any method to form, store and solve these
 systems in order to obtain the solution result that is
 returned to CDRIV3. In particular, this allows sparse
 matrix methods to be used. The call sequence for this
 routine is:

 SUBROUTINE USERS (Y, YH, YWT, SAVE1, SAVE2, T, H, EL,
 8 IMPL, N, NDE, IFLAG)

SLATEC2 (AAAAAA through D9UPAK) - 193

 COMPLEX Y(*), YH(*), YWT(*), SAVE1(*), SAVE2(*)
 REAL T, H, EL

 The input variable IFLAG indicates what action is to be
 taken. Subroutine USERS should perform the following
 operations, depending on the value of IFLAG and IMPL.

 IFLAG = 0
 IMPL = 0. USERS is not called.
 IMPL = 1, 2 or 3. Solve the system A*X = SAVE2,
 returning the result in SAVE2. The array SAVE1 can
 be used as a work array. For IMPL = 1, there are N
 components to the system, and for IMPL = 2 or 3,
 there are NDE components to the system.

 IFLAG = 1
 IMPL = 0. Compute, decompose and store the matrix
 (I - H*EL*J), where I is the identity matrix and J
 is the Jacobian matrix of the right hand side. The
 array SAVE1 can be used as a work array.
 IMPL = 1, 2 or 3. Compute, decompose and store the
 matrix (A - H*EL*J). The array SAVE1 can be used as
 a work array.

 IFLAG = 2
 IMPL = 0. Solve the system
 (I - H*EL*J)*X = H*SAVE2 - YH - SAVE1,
 returning the result in SAVE2.
 IMPL = 1, 2 or 3. Solve the system
 (A - H*EL*J)*X = H*SAVE2 - A*(YH + SAVE1)
 returning the result in SAVE2.
 The array SAVE1 should not be altered.
 If IFLAG is 0 and IMPL is 1 or 2 and the matrix A is
 singular, or if IFLAG is 1 and one of the matrices
 (I - H*EL*J), (A - H*EL*J) is singular, the INTEGER
 variable IFLAG is to be set to -1 before RETURNing.
 Normally a return from USERS passes control back to
 CDRIV3. However, if the user would like to abort the
 calculation, i.e., return control to the program which
 calls CDRIV3, he should set N to zero. CDRIV3 will signal
 this by returning a value of NSTATE equal to +10(-10).
 Altering the value of N in USERS has no effect on the
 value of N in the call sequence of CDRIV3.

 IERFLG = An error flag. The error number associated with a
 diagnostic message (see Section III-A below) is the same
 as the corresponding value of IERFLG. The meaning of
 IERFLG:
 0 The routine completed successfully. (No message is
 issued.)
 3 (Warning) The number of steps required to reach TOUT
 exceeds MXSTEP.
 4 (Warning) The value of EPS is too small.
 11 (Warning) For NTASK = 2 or 3, T is beyond TOUT.
 The solution was obtained by interpolation.
 15 (Warning) The integration step size is below the
 roundoff level of T. (The program issues this
 message as a warning but does not return control to
 the user.)
 22 (Recoverable) N is not positive.

SLATEC2 (AAAAAA through D9UPAK) - 194

 23 (Recoverable) MINT is less than 1 or greater than 3 .
 24 (Recoverable) MITER is less than 0 or greater than
 5 .
 25 (Recoverable) IMPL is less than 0 or greater than 3 .
 26 (Recoverable) The value of NSTATE is less than 1 or
 greater than 12 .
 27 (Recoverable) EPS is less than zero.
 28 (Recoverable) MXORD is not positive.
 29 (Recoverable) For MINT = 3, either MITER = 0 or 3, or
 IMPL = 0 .
 30 (Recoverable) For MITER = 0, IMPL is not 0 .
 31 (Recoverable) For MINT = 1, IMPL is 2 or 3 .
 32 (Recoverable) Insufficient storage has been allocated
 for the WORK array.
 33 (Recoverable) Insufficient storage has been allocated
 for the IWORK array.
 41 (Recoverable) The integration step size has gone
 to zero.
 42 (Recoverable) The integration step size has been
 reduced about 50 times without advancing the
 solution. The problem setup may not be correct.
 43 (Recoverable) For IMPL greater than 0, the matrix A
 is singular.
 999 (Fatal) The value of NSTATE is 12 .

 III. OTHER COMMUNICATION TO THE USER

 A. The solver communicates to the user through the parameters
 above. In addition it writes diagnostic messages through the
 standard error handling program XERMSG. A complete description
 of XERMSG is given in "Guide to the SLATEC Common Mathematical
 Library" by Kirby W. Fong et al.. At installations which do not
 have this error handling package the short but serviceable
 routine, XERMSG, available with this package, can be used. That
 program uses the file named OUTPUT to transmit messages.

 B. The first three elements of WORK and the first five elements of
 IWORK will contain the following statistical data:
 AVGH The average step size used.
 HUSED The step size last used (successfully).
 AVGORD The average order used.
 IMXERR The index of the element of the solution vector that
 contributed most to the last error test.
 NQUSED The order last used (successfully).
 NSTEP The number of steps taken since last initialization.
 NFE The number of evaluations of the right hand side.
 NJE The number of evaluations of the Jacobian matrix.

 IV. REMARKS ...

 A. Other routines used:
 CDNTP, CDZRO, CDSTP, CDNTL, CDPST, CDCOR, CDCST,
 CDPSC, and CDSCL;
 CGEFA, CGESL, CGBFA, CGBSL, and SCNRM2 (from LINPACK)
 R1MACH (from the Bell Laboratories Machine Constants Package)
 XERMSG (from the SLATEC Common Math Library)
 The last seven routines above, not having been written by the
 present authors, are not explicitly part of this package.

 B. On any return from CDRIV3 all information necessary to continue

SLATEC2 (AAAAAA through D9UPAK) - 195

 the calculation is contained in the call sequence parameters,
 including the work arrays. Thus it is possible to suspend one
 problem, integrate another, and then return to the first.

 C. If this package is to be used in an overlay situation, the user
 must declare in the primary overlay the variables in the call
 sequence to CDRIV3.

 D. Changing parameters during an integration.
 The value of NROOT, EPS, EWT, IERROR, MINT, MITER, or HMAX may
 be altered by the user between calls to CDRIV3. For example, if
 too much accuracy has been requested (the program returns with
 NSTATE = 4 and an increased value of EPS) the user may wish to
 increase EPS further. In general, prudence is necessary when
 making changes in parameters since such changes are not
 implemented until the next integration step, which is not
 necessarily the next call to CDRIV3. This can happen if the
 program has already integrated to a point which is beyond the
 new point TOUT.

 E. As the price for complete control of matrix algebra, the CDRIV3
 USERS option puts all responsibility for Jacobian matrix
 evaluation on the user. It is often useful to approximate
 numerically all or part of the Jacobian matrix. However this
 must be done carefully. The FORTRAN sequence below illustrates
 the method we recommend. It can be inserted directly into
 subroutine USERS to approximate Jacobian elements in rows I1
 to I2 and columns J1 to J2.
 COMPLEX DFDY(N,N), R, SAVE1(N), SAVE2(N), Y(N), YJ, YWT(N)
 REAL EPSJ, H, R1MACH, T, UROUND
 UROUND = R1MACH(4)
 EPSJ = SQRT(UROUND)
 DO 30 J = J1,J2
 IF (ABS(Y(J)) .GT. ABS(YWT(J))) THEN
 R = EPSJ*Y(J)
 ELSE
 R = EPSJ*YWT(J)
 END IF
 IF (R .EQ. 0.E0) R = YWT(J)
 YJ = Y(J)
 Y(J) = Y(J) + R
 CALL F (N, T, Y, SAVE1)
 IF (N .EQ. 0) RETURN
 Y(J) = YJ
 DO 20 I = I1,I2
 20 DFDY(I,J) = (SAVE1(I) - SAVE2(I))/R
 30 CONTINUE
 Many problems give rise to structured sparse Jacobians, e.g.,
 block banded. It is possible to approximate them with fewer
 function evaluations than the above procedure uses; see Curtis,
 Powell and Reid, J. Inst. Maths Applics, (1974), Vol. 13,
 pp. 117-119.

 F. When any of the routines JACOBN, FA, G, or USERS, is not
 required, difficulties associated with unsatisfied externals can
 be avoided by using the name of the routine which calculates the
 right hand side of the differential equations in place of the
 corresponding name in the call sequence of CDRIV3.

 ***REFERENCES C. W. Gear, Numerical Initial Value Problems in

SLATEC2 (AAAAAA through D9UPAK) - 196

 Ordinary Differential Equations, Prentice-Hall, 1971.
 ***ROUTINES CALLED CDNTP, CDSTP, CDZRO, CGBFA, CGBSL, CGEFA, CGESL,
 R1MACH, SCNRM2, XERMSG
 ***REVISION HISTORY (YYMMDD)
 790601 DATE WRITTEN
 900329 Initial submission to SLATEC.
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 197

CEXPRL

 COMPLEX FUNCTION CEXPRL (Z)
 ***BEGIN PROLOGUE CEXPRL
 ***PURPOSE Calculate the relative error exponential (EXP(X)-1)/X.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C4B
 ***TYPE COMPLEX (EXPREL-S, DEXPRL-D, CEXPRL-C)
 ***KEYWORDS ELEMENTARY FUNCTIONS, EXPONENTIAL, FIRST ORDER, FNLIB
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 Evaluate (EXP(Z)-1)/Z . For small ABS(Z), we use the Taylor
 series. We could instead use the expression
 CEXPRL(Z) = (EXP(X)*EXP(I*Y)-1)/Z
 = (X*EXPREL(X) * (1 - 2*SIN(Y/2)**2) - 2*SIN(Y/2)**2
 + I*SIN(Y)*(1+X*EXPREL(X))) / Z

 ***REFERENCES (NONE)
 ***ROUTINES CALLED R1MACH
 ***REVISION HISTORY (YYMMDD)
 770801 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 198

CFFTB1

 SUBROUTINE CFFTB1 (N, C, CH, WA, IFAC)
 ***BEGIN PROLOGUE CFFTB1
 ***PURPOSE Compute the unnormalized inverse of CFFTF1.
 ***LIBRARY SLATEC (FFTPACK)
 ***CATEGORY J1A2
 ***TYPE COMPLEX (RFFTB1-S, CFFTB1-C)
 ***KEYWORDS FFTPACK, FOURIER TRANSFORM
 ***AUTHOR Swarztrauber, P. N., (NCAR)
 ***DESCRIPTION

 Subroutine CFFTB1 computes the backward complex discrete Fourier
 transform (the Fourier synthesis). Equivalently, CFFTB1 computes
 a complex periodic sequence from its Fourier coefficients.
 The transform is defined below at output parameter C.

 A call of CFFTF1 followed by a call of CFFTB1 will multiply the
 sequence by N.

 The arrays WA and IFAC which are used by subroutine CFFTB1 must be
 initialized by calling subroutine CFFTI1 (N, WA, IFAC).

 Input Parameters

 N the length of the complex sequence C. The method is
 more efficient when N is the product of small primes.

 C a complex array of length N which contains the sequence

 CH a real work array of length at least 2*N

 WA a real work array which must be dimensioned at least 2*N.

 IFAC an integer work array which must be dimensioned at least 15.

 The WA and IFAC arrays must be initialized by calling
 subroutine CFFTI1 (N, WA, IFAC), and different WA and IFAC
 arrays must be used for each different value of N. This
 initialization does not have to be repeated so long as N
 remains unchanged. Thus subsequent transforms can be
 obtained faster than the first. The same WA and IFAC arrays
 can be used by CFFTF1 and CFFTB1.

 Output Parameters

 C For J=1,...,N

 C(J)=the sum from K=1,...,N of

 C(K)*EXP(I*(J-1)*(K-1)*2*PI/N)

 where I=SQRT(-1)

 NOTE: WA and IFAC contain initialization calculations which must
 not be destroyed between calls of subroutine CFFTF1 or CFFTB1

 ***REFERENCES P. N. Swarztrauber, Vectorizing the FFTs, in Parallel

SLATEC2 (AAAAAA through D9UPAK) - 199

 Computations (G. Rodrigue, ed.), Academic Press,
 1982, pp. 51-83.
 ***ROUTINES CALLED PASSB, PASSB2, PASSB3, PASSB4, PASSB5
 ***REVISION HISTORY (YYMMDD)
 790601 DATE WRITTEN
 830401 Modified to use SLATEC library source file format.
 860115 Modified by Ron Boisvert to adhere to Fortran 77 by
 changing dummy array size declarations (1) to (*).
 881128 Modified by Dick Valent to meet prologue standards.
 891214 Prologue converted to Version 4.0 format. (BAB)
 900131 Routine changed from subsidiary to user-callable. (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 200

CFFTF1

 SUBROUTINE CFFTF1 (N, C, CH, WA, IFAC)
 ***BEGIN PROLOGUE CFFTF1
 ***PURPOSE Compute the forward transform of a complex, periodic
 sequence.
 ***LIBRARY SLATEC (FFTPACK)
 ***CATEGORY J1A2
 ***TYPE COMPLEX (RFFTF1-S, CFFTF1-C)
 ***KEYWORDS FFTPACK, FOURIER TRANSFORM
 ***AUTHOR Swarztrauber, P. N., (NCAR)
 ***DESCRIPTION

 Subroutine CFFTF1 computes the forward complex discrete Fourier
 transform (the Fourier analysis). Equivalently, CFFTF1 computes
 the Fourier coefficients of a complex periodic sequence.
 The transform is defined below at output parameter C.

 The transform is not normalized. To obtain a normalized transform
 the output must be divided by N. Otherwise a call of CFFTF1
 followed by a call of CFFTB1 will multiply the sequence by N.

 The arrays WA and IFAC which are used by subroutine CFFTB1 must be
 initialized by calling subroutine CFFTI1 (N, WA, IFAC).

 Input Parameters

 N the length of the complex sequence C. The method is
 more efficient when N is the product of small primes.

 C a complex array of length N which contains the sequence

 CH a real work array of length at least 2*N

 WA a real work array which must be dimensioned at least 2*N.

 IFAC an integer work array which must be dimensioned at least 15.

 The WA and IFAC arrays must be initialized by calling
 subroutine CFFTI1 (N, WA, IFAC), and different WA and IFAC
 arrays must be used for each different value of N. This
 initialization does not have to be repeated so long as N
 remains unchanged. Thus subsequent transforms can be
 obtained faster than the first. The same WA and IFAC arrays
 can be used by CFFTF1 and CFFTB1.

 Output Parameters

 C For J=1,...,N

 C(J)=the sum from K=1,...,N of

 C(K)*EXP(-I*(J-1)*(K-1)*2*PI/N)

 where I=SQRT(-1)

 NOTE: WA and IFAC contain initialization calculations which must
 not be destroyed between calls of subroutine CFFTF1 or CFFTB1

SLATEC2 (AAAAAA through D9UPAK) - 201

 ***REFERENCES P. N. Swarztrauber, Vectorizing the FFTs, in Parallel
 Computations (G. Rodrigue, ed.), Academic Press,
 1982, pp. 51-83.
 ***ROUTINES CALLED PASSF, PASSF2, PASSF3, PASSF4, PASSF5
 ***REVISION HISTORY (YYMMDD)
 790601 DATE WRITTEN
 830401 Modified to use SLATEC library source file format.
 860115 Modified by Ron Boisvert to adhere to Fortran 77 by
 changing dummy array size declarations (1) to (*).
 881128 Modified by Dick Valent to meet prologue standards.
 891214 Prologue converted to Version 4.0 format. (BAB)
 900131 Routine changed from subsidiary to user-callable. (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 202

CFFTI

 SUBROUTINE CFFTI (N, WSAVE)
 ***BEGIN PROLOGUE CFFTI
 ***SUBSIDIARY
 ***PURPOSE Initialize a work array for CFFTF and CFFTB.
 ***LIBRARY SLATEC (FFTPACK)
 ***CATEGORY J1A2
 ***TYPE COMPLEX (RFFTI-S, CFFTI-C)
 ***KEYWORDS FFTPACK, FOURIER TRANSFORM
 ***AUTHOR Swarztrauber, P. N., (NCAR)
 ***DESCRIPTION

 **
 * NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE *
 **
 * *
 * This routine uses non-standard Fortran 77 constructs and will *
 * be removed from the library at a future date. You are *
 * requested to use CFFTI1. *
 * *
 **

 Subroutine CFFTI initializes the array WSAVE which is used in
 both CFFTF and CFFTB. The prime factorization of N together with
 a tabulation of the trigonometric functions are computed and
 stored in WSAVE.

 Input Parameter

 N the length of the sequence to be transformed

 Output Parameter

 WSAVE a work array which must be dimensioned at least 4*N+15.
 The same work array can be used for both CFFTF and CFFTB
 as long as N remains unchanged. Different WSAVE arrays
 are required for different values of N. The contents of
 WSAVE must not be changed between calls of CFFTF or CFFTB.

 ***REFERENCES P. N. Swarztrauber, Vectorizing the FFTs, in Parallel
 Computations (G. Rodrigue, ed.), Academic Press,
 1982, pp. 51-83.
 ***ROUTINES CALLED CFFTI1
 ***REVISION HISTORY (YYMMDD)
 790601 DATE WRITTEN
 830401 Modified to use SLATEC library source file format.
 860115 Modified by Ron Boisvert to adhere to Fortran 77 by
 changing dummy array size declarations (1) to (*).
 861211 REVISION DATE from Version 3.2
 881128 Modified by Dick Valent to meet prologue standards.
 891214 Prologue converted to Version 4.0 format. (BAB)
 900131 Routine changed from user-callable to subsidiary
 because of non-standard Fortran 77 arguments in the
 call to CFFTB1. (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 203

CFFTI1

 SUBROUTINE CFFTI1 (N, WA, IFAC)
 ***BEGIN PROLOGUE CFFTI1
 ***PURPOSE Initialize a real and an integer work array for CFFTF1 and
 CFFTB1.
 ***LIBRARY SLATEC (FFTPACK)
 ***CATEGORY J1A2
 ***TYPE COMPLEX (RFFTI1-S, CFFTI1-C)
 ***KEYWORDS FFTPACK, FOURIER TRANSFORM
 ***AUTHOR Swarztrauber, P. N., (NCAR)
 ***DESCRIPTION

 Subroutine CFFTI1 initializes the work arrays WA and IFAC which are
 used in both CFFTF1 and CFFTB1. The prime factorization of N and a
 tabulation of the trigonometric functions are computed and stored in
 IFAC and WA, respectively.

 Input Parameter

 N the length of the sequence to be transformed

 Output Parameters

 WA a real work array which must be dimensioned at least 2*N.

 IFAC an integer work array which must be dimensioned at least 15.

 The same work arrays can be used for both CFFTF1 and CFFTB1
 as long as N remains unchanged. Different WA and IFAC arrays
 are required for different values of N. The contents of
 WA and IFAC must not be changed between calls of CFFTF1 or
 CFFTB1.

 ***REFERENCES P. N. Swarztrauber, Vectorizing the FFTs, in Parallel
 Computations (G. Rodrigue, ed.), Academic Press,
 1982, pp. 51-83.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 790601 DATE WRITTEN
 830401 Modified to use SLATEC library source file format.
 860115 Modified by Ron Boisvert to adhere to Fortran 77 by
 (a) changing dummy array size declarations (1) to (*),
 (b) changing references to intrinsic function FLOAT
 to REAL, and
 (c) changing definition of variable TPI by using
 FORTRAN intrinsic function ATAN instead of a DATA
 statement.
 881128 Modified by Dick Valent to meet prologue standards.
 890531 Changed all specific intrinsics to generic. (WRB)
 891214 Prologue converted to Version 4.0 format. (BAB)
 900131 Routine changed from subsidiary to user-callable. (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 204

CG

 SUBROUTINE CG (NM, N, AR, AI, WR, WI, MATZ, ZR, ZI, FV1, FV2, FV3,
 + IERR)
 ***BEGIN PROLOGUE CG
 ***PURPOSE Compute the eigenvalues and, optionally, the eigenvectors
 of a complex general matrix.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4A4
 ***TYPE COMPLEX (RG-S, CG-C)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine calls the recommended sequence of
 subroutines from the eigensystem subroutine package (EISPACK)
 to find the eigenvalues and eigenvectors (if desired)
 of a COMPLEX GENERAL matrix.

 On INPUT

 NM must be set to the row dimension of the two-dimensional
 array parameters, AR, AI, ZR and ZI, as declared in the
 calling program dimension statement. NM is an INTEGER
 variable.

 N is the order of the matrix A=(AR,AI). N is an INTEGER
 variable. N must be less than or equal to NM.

 AR and AI contain the real and imaginary parts, respectively,
 of the complex general matrix. AR and AI are two-dimensional
 REAL arrays, dimensioned AR(NM,N) and AI(NM,N).

 MATZ is an INTEGER variable set equal to zero if only
 eigenvalues are desired. Otherwise, it is set to any
 non-zero integer for both eigenvalues and eigenvectors.

 On OUTPUT

 WR and WI contain the real and imaginary parts, respectively,
 of the eigenvalues. WR and WI are one-dimensional REAL
 arrays, dimensioned WR(N) and WI(N).

 ZR and ZI contain the real and imaginary parts, respectively,
 of the eigenvectors if MATZ is not zero. ZR and ZI are
 two-dimensional REAL arrays, dimensioned ZR(NM,N) and
 ZI(NM,N).

 IERR is an INTEGER flag set to
 Zero for normal return,
 10*N if N is greater than NM,
 J if the J-th eigenvalue has not been
 determined after a total of 30 iterations.
 The eigenvalues should be correct for indices
 IERR+1, IERR+2, ..., N, but no eigenvectors are
 computed.

 FV1, FV2, and FV3 are one-dimensional REAL arrays used for

SLATEC2 (AAAAAA through D9UPAK) - 205

 temporary storage, dimensioned FV1(N), FV2(N), and FV3(N).

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED CBABK2, CBAL, COMQR, COMQR2, CORTH
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 206

CGAMMA

 COMPLEX FUNCTION CGAMMA (Z)
 ***BEGIN PROLOGUE CGAMMA
 ***PURPOSE Compute the complete Gamma function.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C7A
 ***TYPE COMPLEX (GAMMA-S, DGAMMA-D, CGAMMA-C)
 ***KEYWORDS COMPLETE GAMMA FUNCTION, FNLIB, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 CGAMMA(Z) calculates the complete gamma function for COMPLEX
 argument Z. This is a preliminary version that is portable
 but not accurate.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED CLNGAM
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 861211 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 207

CGAMR

 COMPLEX FUNCTION CGAMR (Z)
 ***BEGIN PROLOGUE CGAMR
 ***PURPOSE Compute the reciprocal of the Gamma function.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C7A
 ***TYPE COMPLEX (GAMR-S, DGAMR-D, CGAMR-C)
 ***KEYWORDS FNLIB, RECIPROCAL GAMMA FUNCTION, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 CGAMR(Z) calculates the reciprocal gamma function for COMPLEX
 argument Z. This is a preliminary version that is not accurate.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED CLNGAM, XERCLR, XGETF, XSETF
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 861211 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 208

CGBCO

 SUBROUTINE CGBCO (ABD, LDA, N, ML, MU, IPVT, RCOND, Z)
 ***BEGIN PROLOGUE CGBCO
 ***PURPOSE Factor a band matrix by Gaussian elimination and
 estimate the condition number of the matrix.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2C2
 ***TYPE COMPLEX (SGBCO-S, DGBCO-D, CGBCO-C)
 ***KEYWORDS BANDED, CONDITION NUMBER, LINEAR ALGEBRA, LINPACK,
 MATRIX FACTORIZATION
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 CGBCO factors a complex band matrix by Gaussian
 elimination and estimates the condition of the matrix.

 If RCOND is not needed, CGBFA is slightly faster.
 To solve A*X = B , follow CGBCO by CGBSL.
 To compute INVERSE(A)*C , follow CGBCO by CGBSL.
 To compute DETERMINANT(A) , follow CGBCO by CGBDI.

 On Entry

 ABD COMPLEX(LDA, N)
 contains the matrix in band storage. The columns
 of the matrix are stored in the columns of ABD and
 the diagonals of the matrix are stored in rows
 ML+1 through 2*ML+MU+1 of ABD .
 See the comments below for details.

 LDA INTEGER
 the leading dimension of the array ABD .
 LDA must be .GE. 2*ML + MU + 1 .

 N INTEGER
 the order of the original matrix.

 ML INTEGER
 number of diagonals below the main diagonal.
 0 .LE. ML .LT. N .

 MU INTEGER
 number of diagonals above the main diagonal.
 0 .LE. MU .LT. N .
 More efficient if ML .LE. MU .

 On Return

 ABD an upper triangular matrix in band storage and
 the multipliers which were used to obtain it.
 The factorization can be written A = L*U where
 L is a product of permutation and unit lower
 triangular matrices and U is upper triangular.

 IPVT INTEGER(N)
 an integer vector of pivot indices.

SLATEC2 (AAAAAA through D9UPAK) - 209

 RCOND REAL
 an estimate of the reciprocal condition of A .
 For the system A*X = B , relative perturbations
 in A And B of size EPSILON may cause
 relative perturbations in X of size EPSILON/RCOND .
 If RCOND is so small that the logical expression
 1.0 + RCOND .EQ. 1.0
 is true, then A may be singular to working
 precision. In particular, RCOND is zero if
 exact singularity is detected or the estimate
 underflows.

 Z COMPLEX(N)
 a work vector whose contents are usually unimportant.
 If A is close to a singular matrix, then Z is
 an approximate null vector in the sense that
 NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .

 Band Storage

 if A is a band matrix, the following program segment
 will set up the input.

 ML = (band width below the diagonal)
 MU = (band width above the diagonal)
 M = ML + MU + 1
 DO 20 J = 1, N
 I1 = MAX(1, J-MU)
 I2 = MIN(N, J+Ml)
 DO 10 I = I1, I2
 K = I - J + M
 ABD(K,J) = A(I,J)
 10 CONTINUE
 20 CONTINUE

 This uses rows ML+1 through 2*ML+MU+1 of ABD .
 In addition, the first ML rows in ABD are used for
 elements generated during the triangularization.
 The total number of rows needed in ABD is 2*ML+MU+1 .
 The ML+MU by ML+MU upper left triangle and the
 ML by ML lower right triangle are not referenced.

 Example: If the original matrix is

 11 12 13 0 0 0
 21 22 23 24 0 0
 0 32 33 34 35 0
 0 0 43 44 45 46
 0 0 0 54 55 56
 0 0 0 0 65 66

 then N = 6, ML = 1, MU = 2, LDA .GE. 5 and ABD should contain

 * * * + + + , * = not used
 * * 13 24 35 46 , + = used for pivoting
 * 12 23 34 45 56
 11 22 33 44 55 66
 21 32 43 54 65 *

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.

SLATEC2 (AAAAAA through D9UPAK) - 210

 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CAXPY, CDOTC, CGBFA, CSSCAL, SCASUM
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 211

CGBDI

 SUBROUTINE CGBDI (ABD, LDA, N, ML, MU, IPVT, DET)
 ***BEGIN PROLOGUE CGBDI
 ***PURPOSE Compute the determinant of a complex band matrix using the
 factors from CGBCO or CGBFA.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D3C2
 ***TYPE COMPLEX (SGBDI-S, DGBDI-D, CGBDI-C)
 ***KEYWORDS BANDED, DETERMINANT, INVERSE, LINEAR ALGEBRA, LINPACK,
 MATRIX
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 CGBDI computes the determinant of a band matrix
 using the factors computed by CGBCO or CGBFA.
 If the inverse is needed, use CGBSL N times.

 On Entry

 ABD COMPLEX(LDA, N)
 the output from CGBCO or CGBFA.

 LDA INTEGER
 the leading dimension of the array ABD .

 N INTEGER
 the order of the original matrix.

 ML INTEGER
 number of diagonals below the main diagonal.

 MU INTEGER
 number of diagonals above the main diagonal.

 IPVT INTEGER(N)
 the pivot vector from CGBCO or CGBFA.

 On Return

 DET COMPLEX(2)
 determinant of original matrix.
 Determinant = DET(1) * 10.0**DET(2)
 with 1.0 .LE. CABS1(DET(1)) .LT. 10.0
 or DET(1) = 0.0 .

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 212

CGBFA

 SUBROUTINE CGBFA (ABD, LDA, N, ML, MU, IPVT, INFO)
 ***BEGIN PROLOGUE CGBFA
 ***PURPOSE Factor a band matrix using Gaussian elimination.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2C2
 ***TYPE COMPLEX (SGBFA-S, DGBFA-D, CGBFA-C)
 ***KEYWORDS BANDED, LINEAR ALGEBRA, LINPACK, MATRIX FACTORIZATION
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 CGBFA factors a complex band matrix by elimination.

 CGBFA is usually called by CGBCO, but it can be called
 directly with a saving in time if RCOND is not needed.

 On Entry

 ABD COMPLEX(LDA, N)
 contains the matrix in band storage. The columns
 of the matrix are stored in the columns of ABD and
 the diagonals of the matrix are stored in rows
 ML+1 through 2*ML+MU+1 of ABD .
 See the comments below for details.

 LDA INTEGER
 the leading dimension of the array ABD .
 LDA must be .GE. 2*ML + MU + 1 .

 N INTEGER
 the order of the original matrix.

 ML INTEGER
 number of diagonals below the main diagonal.
 0 .LE. ML .LT. N .

 MU INTEGER
 number of diagonals above the main diagonal.
 0 .LE. MU .LT. N .
 More efficient if ML .LE. MU .
 On Return

 ABD an upper triangular matrix in band storage and
 the multipliers which were used to obtain it.
 The factorization can be written A = L*U where
 L is a product of permutation and unit lower
 triangular matrices and U is upper triangular.

 IPVT INTEGER(N)
 an integer vector of pivot indices.

 INFO INTEGER
 = 0 normal value.
 = K if U(K,K) .EQ. 0.0 . This is not an error
 condition for this subroutine, but it does
 indicate that CGBSL will divide by zero if
 called. Use RCOND in CGBCO for a reliable

SLATEC2 (AAAAAA through D9UPAK) - 213

 indication of singularity.

 Band Storage

 If A is a band matrix, the following program segment
 will set up the input.

 ML = (band width below the diagonal)
 MU = (band width above the diagonal)
 M = ML + MU + 1
 DO 20 J = 1, N
 I1 = MAX(1, J-MU)
 I2 = MIN(N, J+ML)
 DO 10 I = I1, I2
 K = I - J + M
 ABD(K,J) = A(I,J)
 10 CONTINUE
 20 CONTINUE

 This uses rows ML+1 through 2*ML+MU+1 of ABD .
 In addition, the first ML rows in ABD are used for
 elements generated during the triangularization.
 The total number of rows needed in ABD is 2*ML+MU+1 .
 The ML+MU by ML+MU upper left triangle and the
 ML by ML lower right triangle are not referenced.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CAXPY, CSCAL, ICAMAX
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 214

CGBMV

 SUBROUTINE CGBMV (TRANS, M, N, KL, KU, ALPHA, A, LDA, X, INCX,
 $ BETA, Y, INCY)
 ***BEGIN PROLOGUE CGBMV
 ***PURPOSE Multiply a complex vector by a complex general band matrix.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE COMPLEX (SGBMV-S, DGBMV-D, CGBMV-C)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 CGBMV performs one of the matrix-vector operations

 y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or

 y := alpha*conjg(A')*x + beta*y,

 where alpha and beta are scalars, x and y are vectors and A is an
 m by n band matrix, with kl sub-diagonals and ku super-diagonals.

 Parameters
 ==========

 TRANS - CHARACTER*1.
 On entry, TRANS specifies the operation to be performed as
 follows:

 TRANS = 'N' or 'n' y := alpha*A*x + beta*y.

 TRANS = 'T' or 't' y := alpha*A'*x + beta*y.

 TRANS = 'C' or 'c' y := alpha*conjg(A')*x + beta*y.

 Unchanged on exit.

 M - INTEGER.
 On entry, M specifies the number of rows of the matrix A.
 M must be at least zero.
 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the number of columns of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 KL - INTEGER.
 On entry, KL specifies the number of sub-diagonals of the
 matrix A. KL must satisfy 0 .le. KL.
 Unchanged on exit.

 KU - INTEGER.
 On entry, KU specifies the number of super-diagonals of the
 matrix A. KU must satisfy 0 .le. KU.

SLATEC2 (AAAAAA through D9UPAK) - 215

 Unchanged on exit.

 ALPHA - COMPLEX .
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A - COMPLEX array of DIMENSION (LDA, n).
 Before entry, the leading (kl + ku + 1) by n part of the
 array A must contain the matrix of coefficients, supplied
 column by column, with the leading diagonal of the matrix in
 row (ku + 1) of the array, the first super-diagonal
 starting at position 2 in row ku, the first sub-diagonal
 starting at position 1 in row (ku + 2), and so on.
 Elements in the array A that do not correspond to elements
 in the band matrix (such as the top left ku by ku triangle)
 are not referenced.
 The following program segment will transfer a band matrix
 from conventional full matrix storage to band storage:

 DO 20, J = 1, N
 K = KU + 1 - J
 DO 10, I = MAX(1, J - KU), MIN(M, J + KL)
 A(K + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE

 Unchanged on exit.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. LDA must be at least
 (kl + ku + 1).
 Unchanged on exit.

 X - COMPLEX array of DIMENSION at least
 (1 + (n - 1)*abs(INCX)) when TRANS = 'N' or 'n'
 and at least
 (1 + (m - 1)*abs(INCX)) otherwise.
 Before entry, the incremented array X must contain the
 vector x.
 Unchanged on exit.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

 BETA - COMPLEX .
 On entry, BETA specifies the scalar beta. When BETA is
 supplied as zero then Y need not be set on input.
 Unchanged on exit.

 Y - COMPLEX array of DIMENSION at least
 (1 + (m - 1)*abs(INCY)) when TRANS = 'N' or 'n'
 and at least
 (1 + (n - 1)*abs(INCY)) otherwise.
 Before entry, the incremented array Y must contain the
 vector y. On exit, Y is overwritten by the updated vector y.

SLATEC2 (AAAAAA through D9UPAK) - 216

 INCY - INTEGER.
 On entry, INCY specifies the increment for the elements of
 Y. INCY must not be zero.
 Unchanged on exit.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 217

CGBSL

 SUBROUTINE CGBSL (ABD, LDA, N, ML, MU, IPVT, B, JOB)
 ***BEGIN PROLOGUE CGBSL
 ***PURPOSE Solve the complex band system A*X=B or CTRANS(A)*X=B using
 the factors computed by CGBCO or CGBFA.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2C2
 ***TYPE COMPLEX (SGBSL-S, DGBSL-D, CGBSL-C)
 ***KEYWORDS BANDED, LINEAR ALGEBRA, LINPACK, MATRIX, SOLVE
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 CGBSL solves the complex band system
 A * X = B or CTRANS(A) * X = B
 using the factors computed by CGBCO or CGBFA.

 On Entry

 ABD COMPLEX(LDA, N)
 the output from CGBCO or CGBFA.

 LDA INTEGER
 the leading dimension of the array ABD .

 N INTEGER
 the order of the original matrix.

 ML INTEGER
 number of diagonals below the main diagonal.

 MU INTEGER
 number of diagonals above the main diagonal.

 IPVT INTEGER(N)
 the pivot vector from CGBCO or CGBFA.

 B COMPLEX(N)
 the right hand side vector.

 JOB INTEGER
 = 0 to solve A*X = B ,
 = nonzero to solve CTRANS(A)*X = B , where
 CTRANS(A) is the conjugate transpose.

 On Return

 B the solution vector X .

 Error Condition

 A division by zero will occur if the input factor contains a
 zero on the diagonal. Technically this indicates singularity
 but it is often caused by improper arguments or improper
 setting of LDA . It will not occur if the subroutines are
 called correctly and if CGBCO has set RCOND .GT. 0.0
 or CGBFA has set INFO .EQ. 0 .

SLATEC2 (AAAAAA through D9UPAK) - 218

 To compute INVERSE(A) * C where C is a matrix
 with P columns
 CALL CGBCO(ABD,LDA,N,ML,MU,IPVT,RCOND,Z)
 IF (RCOND is too small) GO TO ...
 DO 10 J = 1, P
 CALL CGBSL(ABD,LDA,N,ML,MU,IPVT,C(1,J),0)
 10 CONTINUE

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CAXPY, CDOTC
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 219

CGECO

 SUBROUTINE CGECO (A, LDA, N, IPVT, RCOND, Z)
 ***BEGIN PROLOGUE CGECO
 ***PURPOSE Factor a matrix using Gaussian elimination and estimate
 the condition number of the matrix.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2C1
 ***TYPE COMPLEX (SGECO-S, DGECO-D, CGECO-C)
 ***KEYWORDS CONDITION NUMBER, GENERAL MATRIX, LINEAR ALGEBRA, LINPACK,
 MATRIX FACTORIZATION
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 CGECO factors a complex matrix by Gaussian elimination
 and estimates the condition of the matrix.

 If RCOND is not needed, CGEFA is slightly faster.
 To solve A*X = B , follow CGECO By CGESL.
 To Compute INVERSE(A)*C , follow CGECO by CGESL.
 To compute DETERMINANT(A) , follow CGECO by CGEDI.
 To compute INVERSE(A) , follow CGECO by CGEDI.

 On Entry

 A COMPLEX(LDA, N)
 the matrix to be factored.

 LDA INTEGER
 the leading dimension of the array A .

 N INTEGER
 the order of the matrix A .

 On Return

 A an upper triangular matrix and the multipliers
 which were used to obtain it.
 The factorization can be written A = L*U where
 L is a product of permutation and unit lower
 triangular matrices and U is upper triangular.

 IPVT INTEGER(N)
 an integer vector of pivot indices.

 RCOND REAL
 an estimate of the reciprocal condition of A .
 For the system A*X = B , relative perturbations
 in A and B of size EPSILON may cause
 relative perturbations in X of size EPSILON/RCOND .
 If RCOND is so small that the logical expression
 1.0 + RCOND .EQ. 1.0
 is true, then A may be singular to working
 precision. In particular, RCOND is zero if
 exact singularity is detected or the estimate
 underflows.

 Z COMPLEX(N)

SLATEC2 (AAAAAA through D9UPAK) - 220

 a work vector whose contents are usually unimportant.
 If A is close to a singular matrix, then Z is
 an approximate null vector in the sense that
 NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CAXPY, CDOTC, CGEFA, CSSCAL, SCASUM
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 221

CGEDI

 SUBROUTINE CGEDI (A, LDA, N, IPVT, DET, WORK, JOB)
 ***BEGIN PROLOGUE CGEDI
 ***PURPOSE Compute the determinant and inverse of a matrix using the
 factors computed by CGECO or CGEFA.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2C1, D3C1
 ***TYPE COMPLEX (SGEDI-S, DGEDI-D, CGEDI-C)
 ***KEYWORDS DETERMINANT, INVERSE, LINEAR ALGEBRA, LINPACK, MATRIX
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 CGEDI computes the determinant and inverse of a matrix
 using the factors computed by CGECO or CGEFA.

 On Entry

 A COMPLEX(LDA, N)
 the output from CGECO or CGEFA.

 LDA INTEGER
 the leading dimension of the array A .

 N INTEGER
 the order of the matrix A .

 IPVT INTEGER(N)
 the pivot vector from CGECO or CGEFA.

 WORK COMPLEX(N)
 work vector. Contents destroyed.

 JOB INTEGER
 = 11 both determinant and inverse.
 = 01 inverse only.
 = 10 determinant only.

 On Return

 A inverse of original matrix if requested.
 Otherwise unchanged.

 DET COMPLEX(2)
 determinant of original matrix if requested.
 Otherwise not referenced.
 Determinant = DET(1) * 10.0**DET(2)
 with 1.0 .LE. CABS1(DET(1)) .LT. 10.0
 or DET(1) .EQ. 0.0 .

 Error Condition

 A division by zero will occur if the input factor contains
 a zero on the diagonal and the inverse is requested.
 It will not occur if the subroutines are called correctly
 and if CGECO has set RCOND .GT. 0.0 or CGEFA has set
 INFO .EQ. 0 .

SLATEC2 (AAAAAA through D9UPAK) - 222

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CAXPY, CSCAL, CSWAP
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 223

CGEEV

 SUBROUTINE CGEEV (A, LDA, N, E, V, LDV, WORK, JOB, INFO)
 ***BEGIN PROLOGUE CGEEV
 ***PURPOSE Compute the eigenvalues and, optionally, the eigenvectors
 of a complex general matrix.
 ***LIBRARY SLATEC
 ***CATEGORY D4A4
 ***TYPE COMPLEX (SGEEV-S, CGEEV-C)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, GENERAL MATRIX
 ***AUTHOR Kahaner, D. K., (NBS)
 Moler, C. B., (U. of New Mexico)
 Stewart, G. W., (U. of Maryland)
 ***DESCRIPTION

 Abstract
 CGEEV computes the eigenvalues and, optionally,
 the eigenvectors of a general complex matrix.

 Call Sequence Parameters-
 (The values of parameters marked with * (star) will be changed
 by CGEEV.)

 A* COMPLEX(LDA,N)
 complex nonsymmetric input matrix.

 LDA INTEGER
 set by the user to
 the leading dimension of the complex array A.

 N INTEGER
 set by the user to
 the order of the matrices A and V, and
 the number of elements in E.

 E* COMPLEX(N)
 on return from CGEEV E contains the eigenvalues of A.
 See also INFO below.

 V* COMPLEX(LDV,N)
 on return from CGEEV if the user has set JOB
 = 0 V is not referenced.
 = nonzero the N eigenvectors of A are stored in the
 first N columns of V. See also INFO below.
 (If the input matrix A is nearly degenerate, V
 will be badly conditioned, i.e. have nearly
 dependent columns.)

 LDV INTEGER
 set by the user to
 the leading dimension of the array V if JOB is also
 set nonzero. In that case N must be .LE. LDV.
 If JOB is set to zero LDV is not referenced.

 WORK* REAL(3N)
 temporary storage vector. Contents changed by CGEEV.

 JOB INTEGER

SLATEC2 (AAAAAA through D9UPAK) - 224

 set by the user to
 = 0 eigenvalues only to be calculated by CGEEV.
 neither V nor LDV are referenced.
 = nonzero eigenvalues and vectors to be calculated.
 In this case A & V must be distinct arrays.
 Also, if LDA > LDV, CGEEV changes all the
 elements of A thru column N. If LDA < LDV,
 CGEEV changes all the elements of V through
 column N. If LDA = LDV only A(I,J) and V(I,
 J) for I,J = 1,...,N are changed by CGEEV.

 INFO* INTEGER
 on return from CGEEV the value of INFO is
 = 0 normal return, calculation successful.
 = K if the eigenvalue iteration fails to converge,
 eigenvalues K+1 through N are correct, but
 no eigenvectors were computed even if they were
 requested (JOB nonzero).

 Error Messages
 No. 1 recoverable N is greater than LDA
 No. 2 recoverable N is less than one.
 No. 3 recoverable JOB is nonzero and N is greater than LDV
 No. 4 warning LDA > LDV, elements of A other than the
 N by N input elements have been changed
 No. 5 warning LDA < LDV, elements of V other than the
 N by N output elements have been changed

 ***REFERENCES (NONE)
 ***ROUTINES CALLED CBABK2, CBAL, COMQR, COMQR2, CORTH, SCOPY, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800808 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 225

CGEFA

 SUBROUTINE CGEFA (A, LDA, N, IPVT, INFO)
 ***BEGIN PROLOGUE CGEFA
 ***PURPOSE Factor a matrix using Gaussian elimination.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2C1
 ***TYPE COMPLEX (SGEFA-S, DGEFA-D, CGEFA-C)
 ***KEYWORDS GENERAL MATRIX, LINEAR ALGEBRA, LINPACK,
 MATRIX FACTORIZATION
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 CGEFA factors a complex matrix by Gaussian elimination.

 CGEFA is usually called by CGECO, but it can be called
 directly with a saving in time if RCOND is not needed.
 (Time for CGECO) = (1 + 9/N)*(Time for CGEFA) .

 On Entry

 A COMPLEX(LDA, N)
 the matrix to be factored.

 LDA INTEGER
 the leading dimension of the array A .

 N INTEGER
 the order of the matrix A .

 On Return

 A an upper triangular matrix and the multipliers
 which were used to obtain it.
 The factorization can be written A = L*U where
 L is a product of permutation and unit lower
 triangular matrices and U is upper triangular.

 IPVT INTEGER(N)
 an integer vector of pivot indices.

 INFO INTEGER
 = 0 normal value.
 = K if U(K,K) .EQ. 0.0 . This is not an error
 condition for this subroutine, but it does
 indicate that CGESL or CGEDI will divide by zero
 if called. Use RCOND in CGECO for a reliable
 indication of singularity.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CAXPY, CSCAL, ICAMAX
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.

SLATEC2 (AAAAAA through D9UPAK) - 226

 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 227

CGEFS

 SUBROUTINE CGEFS (A, LDA, N, V, ITASK, IND, WORK, IWORK)
 ***BEGIN PROLOGUE CGEFS
 ***PURPOSE Solve a general system of linear equations.
 ***LIBRARY SLATEC
 ***CATEGORY D2C1
 ***TYPE COMPLEX (SGEFS-S, DGEFS-D, CGEFS-C)
 ***KEYWORDS COMPLEX LINEAR EQUATIONS, GENERAL MATRIX,
 GENERAL SYSTEM OF LINEAR EQUATIONS
 ***AUTHOR Voorhees, E. A., (LANL)
 ***DESCRIPTION

 Subroutine CGEFS solves A general NxN system of complex
 linear equations using LINPACK subroutines CGECO
 and CGESL. That is, if A is an NxN complex matrix
 and if X and B are complex N-vectors, then CGEFS
 solves the equation

 A*X=B.

 The matrix A is first factored into upper and lower tri-
 angular matrices U and L using partial pivoting. These
 factors and the pivoting information are used to find the
 solution vector X. An approximate condition number is
 calculated to provide a rough estimate of the number of
 digits of accuracy in the computed solution.

 If the equation A*X=B is to be solved for more than one vector
 B, the factoring of A does not need to be performed again and
 the option to only solve (ITASK .GT. 1) will be faster for
 the succeeding solutions. In this case, the contents of A,
 LDA, N and IWORK must not have been altered by the user follow-
 ing factorization (ITASK=1). IND will not be changed by CGEFS
 in this case.

 Argument Description ***

 A COMPLEX(LDA,N)
 on entry, the doubly subscripted array with dimension
 (LDA,N) which contains the coefficient matrix.
 on return, an upper triangular matrix U and the
 multipliers necessary to construct a matrix L
 so that A=L*U.
 LDA INTEGER
 the leading dimension of the array A. LDA must be great-
 er than or equal to N. (Terminal error message IND=-1)
 N INTEGER
 the order of the matrix A. The first N elements of
 the array A are the elements of the first column of
 the matrix A. N must be greater than or equal to 1.
 (Terminal error message IND=-2)
 V COMPLEX(N)
 on entry, the singly subscripted array(vector) of di-
 mension N which contains the right hand side B of a
 system of simultaneous linear equations A*X=B.
 on return, V contains the solution vector, X .
 ITASK INTEGER

SLATEC2 (AAAAAA through D9UPAK) - 228

 if ITASK=1, the matrix A is factored and then the
 linear equation is solved.
 if ITASK .GT. 1, the equation is solved using the existing
 factored matrix A and IWORK.
 if ITASK .LT. 1, then terminal error message IND=-3 is
 printed.
 IND INTEGER
 GT.0 IND is a rough estimate of the number of digits
 of accuracy in the solution, X.
 LT.0 see error message corresponding to IND below.
 WORK COMPLEX(N)
 a singly subscripted array of dimension at least N.
 IWORK INTEGER(N)
 a singly subscripted array of dimension at least N.

 Error Messages Printed ***

 IND=-1 terminal N is greater than LDA.
 IND=-2 terminal N is less than 1.
 IND=-3 terminal ITASK is less than 1.
 IND=-4 terminal The matrix A is computationally singular.
 A solution has not been computed.
 IND=-10 warning The solution has no apparent significance.
 The solution may be inaccurate or the matrix
 A may be poorly scaled.

 NOTE- The above terminal(*fatal*) error messages are
 designed to be handled by XERMSG in which
 LEVEL=1 (recoverable) and IFLAG=2 . LEVEL=0
 for warning error messages from XERMSG. Unless
 the user provides otherwise, an error message
 will be printed followed by an abort.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CGECO, CGESL, R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800328 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900510 Convert XERRWV calls to XERMSG calls, cvt GOTO's to
 IF-THEN-ELSE. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 229

CGEIR

 SUBROUTINE CGEIR (A, LDA, N, V, ITASK, IND, WORK, IWORK)
 ***BEGIN PROLOGUE CGEIR
 ***PURPOSE Solve a general system of linear equations. Iterative
 refinement is used to obtain an error estimate.
 ***LIBRARY SLATEC
 ***CATEGORY D2C1
 ***TYPE COMPLEX (SGEIR-S, CGEIR-C)
 ***KEYWORDS COMPLEX LINEAR EQUATIONS, GENERAL MATRIX,
 GENERAL SYSTEM OF LINEAR EQUATIONS
 ***AUTHOR Voorhees, E. A., (LANL)
 ***DESCRIPTION

 Subroutine CGEIR solves a general NxN system of complex
 linear equations using LINPACK subroutines CGEFA and CGESL.
 One pass of iterative refinement is used only to obtain an
 estimate of the accuracy. That is, if A is an NxN complex
 matrix and if X and B are complex N-vectors, then CGEIR solves
 the equation

 A*X=B.

 The matrix A is first factored into upper and lower tri-
 angular matrices U and L using partial pivoting. These
 factors and the pivoting information are used to calculate
 the solution, X. Then the residual vector is found and
 used to calculate an estimate of the relative error, IND.
 IND estimates the accuracy of the solution only when the
 input matrix and the right hand side are represented
 exactly in the computer and does not take into
 account any errors in the input data.

 If the equation A*X=B is to be solved for more than one vector
 B, the factoring of A does not need to be performed again and
 the option to only solve (ITASK .GT. 1) will be faster for
 the succeeding solutions. In this case, the contents of A,
 LDA, N, WORK, and IWORK must not have been altered by the
 user following factorization (ITASK=1). IND will not be
 changed by CGEIR in this case.

 Argument Description ***

 A COMPLEX(LDA,N)
 the doubly subscripted array with dimension (LDA,N)
 which contains the coefficient matrix. A is not
 altered by the routine.
 LDA INTEGER
 the leading dimension of the array A. LDA must be great-
 er than or equal to N. (Terminal error message IND=-1)
 N INTEGER
 the order of the matrix A. The first N elements of
 the array A are the elements of the first column of
 matrix A. N must be greater than or equal to 1.
 (Terminal error message IND=-2)
 V COMPLEX(N)
 on entry, the singly subscripted array(vector) of di-
 mension N which contains the right hand side B of a

SLATEC2 (AAAAAA through D9UPAK) - 230

 system of simultaneous linear equations A*X=B.
 on return, V contains the solution vector, X .
 ITASK INTEGER
 if ITASK=1, the matrix A is factored and then the
 linear equation is solved.
 if ITASK .GT. 1, the equation is solved using the existing
 factored matrix A (stored in work).
 if ITASK .LT. 1, then terminal error message IND=-3 is
 printed.
 IND INTEGER
 GT.0 IND is a rough estimate of the number of digits
 of accuracy in the solution, X. IND=75 means
 that the solution vector X is zero.
 LT.0 see error message corresponding to IND below.
 WORK COMPLEX(N*(N+1))
 a singly subscripted array of dimension at least N*(N+1).
 IWORK INTEGER(N)
 a singly subscripted array of dimension at least N.

 Error Messages Printed ***

 IND=-1 terminal N is greater than LDA.
 IND=-2 terminal N is less than one.
 IND=-3 terminal ITASK is less than one.
 IND=-4 terminal The matrix A is computationally singular.
 A solution has not been computed.
 IND=-10 warning The solution has no apparent significance.
 The solution may be inaccurate or the matrix
 A may be poorly scaled.

 NOTE- The above terminal(*fatal*) error messages are
 designed to be handled by XERMSG in which
 LEVEL=1 (recoverable) and IFLAG=2 . LEVEL=0
 for warning error messages from XERMSG. Unless
 the user provides otherwise, an error message
 will be printed followed by an abort.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CCOPY, CDCDOT, CGEFA, CGESL, R1MACH, SCASUM, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800502 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900510 Convert XERRWV calls to XERMSG calls, cvt GOTO's to
 IF-THEN-ELSE. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 231

CGEMM

 SUBROUTINE CGEMM (TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB,
 $ BETA, C, LDC)
 ***BEGIN PROLOGUE CGEMM
 ***PURPOSE Multiply a complex general matrix by a complex general
 matrix.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B6
 ***TYPE COMPLEX (SGEMM-S, DGEMM-D, CGEMM-C)
 ***KEYWORDS LEVEL 3 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J., (ANL)
 Duff, I., (AERE)
 Du Croz, J., (NAG)
 Hammarling, S. (NAG)
 ***DESCRIPTION

 CGEMM performs one of the matrix-matrix operations

 C := alpha*op(A)*op(B) + beta*C,

 where op(X) is one of

 op(X) = X or op(X) = X' or op(X) = conjg(X'),

 alpha and beta are scalars, and A, B and C are matrices, with op(A)
 an m by k matrix, op(B) a k by n matrix and C an m by n matrix.

 Parameters
 ==========

 TRANSA - CHARACTER*1.
 On entry, TRANSA specifies the form of op(A) to be used in
 the matrix multiplication as follows:

 TRANSA = 'N' or 'n', op(A) = A.

 TRANSA = 'T' or 't', op(A) = A'.

 TRANSA = 'C' or 'c', op(A) = conjg(A').

 Unchanged on exit.

 TRANSB - CHARACTER*1.
 On entry, TRANSB specifies the form of op(B) to be used in
 the matrix multiplication as follows:

 TRANSB = 'N' or 'n', op(B) = B.

 TRANSB = 'T' or 't', op(B) = B'.

 TRANSB = 'C' or 'c', op(B) = conjg(B').

 Unchanged on exit.

 M - INTEGER.
 On entry, M specifies the number of rows of the matrix
 op(A) and of the matrix C. M must be at least zero.

SLATEC2 (AAAAAA through D9UPAK) - 232

 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the number of columns of the matrix
 op(B) and the number of columns of the matrix C. N must be
 at least zero.
 Unchanged on exit.

 K - INTEGER.
 On entry, K specifies the number of columns of the matrix
 op(A) and the number of rows of the matrix op(B). K must
 be at least zero.
 Unchanged on exit.

 ALPHA - COMPLEX .
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A - COMPLEX array of DIMENSION (LDA, ka), where ka is
 k when TRANSA = 'N' or 'n', and is m otherwise.
 Before entry with TRANSA = 'N' or 'n', the leading m by k
 part of the array A must contain the matrix A, otherwise
 the leading k by m part of the array A must contain the
 matrix A.
 Unchanged on exit.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. When TRANSA = 'N' or 'n' then
 LDA must be at least max(1, m), otherwise LDA must be at
 least max(1, k).
 Unchanged on exit.

 B - COMPLEX array of DIMENSION (LDB, kb), where kb is
 n when TRANSB = 'N' or 'n', and is k otherwise.
 Before entry with TRANSB = 'N' or 'n', the leading k by n
 part of the array B must contain the matrix B, otherwise
 the leading n by k part of the array B must contain the
 matrix B.
 Unchanged on exit.

 LDB - INTEGER.
 On entry, LDB specifies the first dimension of B as declared
 in the calling (sub) program. When TRANSB = 'N' or 'n' then
 LDB must be at least max(1, k), otherwise LDB must be at
 least max(1, n).
 Unchanged on exit.

 BETA - COMPLEX .
 On entry, BETA specifies the scalar beta. When BETA is
 supplied as zero then C need not be set on input.
 Unchanged on exit.

 C - COMPLEX array of DIMENSION (LDC, n).
 Before entry, the leading m by n part of the array C must
 contain the matrix C, except when beta is zero, in which
 case C need not be set on entry.
 On exit, the array C is overwritten by the m by n matrix
 (alpha*op(A)*op(B) + beta*C).

SLATEC2 (AAAAAA through D9UPAK) - 233

 LDC - INTEGER.
 On entry, LDC specifies the first dimension of C as declared
 in the calling (sub) program. LDC must be at least
 max(1, m).
 Unchanged on exit.

 ***REFERENCES Dongarra, J., Du Croz, J., Duff, I., and Hammarling, S.
 A set of level 3 basic linear algebra subprograms.
 ACM TOMS, Vol. 16, No. 1, pp. 1-17, March 1990.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 890208 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 234

CGEMV

 SUBROUTINE CGEMV (TRANS, M. N, ALPHA, A, LDA, X, INCX, BETA, Y,
 $ INCY)
 ***BEGIN PROLOGUE CGEMV
 ***PURPOSE Multiply a complex vector by a complex general matrix.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE COMPLEX (SGEMV-S, DGEMV-D, CGEMV-C)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 CGEMV performs one of the matrix-vector operations

 y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or

 y := alpha*conjg(A')*x + beta*y,

 where alpha and beta are scalars, x and y are vectors and A is an
 m by n matrix.

 Parameters
 ==========

 TRANS - CHARACTER*1.
 On entry, TRANS specifies the operation to be performed as
 follows:

 TRANS = 'N' or 'n' y := alpha*A*x + beta*y.

 TRANS = 'T' or 't' y := alpha*A'*x + beta*y.

 TRANS = 'C' or 'c' y := alpha*conjg(A')*x + beta*y.

 Unchanged on exit.

 M - INTEGER.
 On entry, M specifies the number of rows of the matrix A.
 M must be at least zero.
 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the number of columns of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 ALPHA - COMPLEX .
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A - COMPLEX array of DIMENSION (LDA, n).
 Before entry, the leading m by n part of the array A must
 contain the matrix of coefficients.
 Unchanged on exit.

SLATEC2 (AAAAAA through D9UPAK) - 235

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. LDA must be at least
 max(1, m).
 Unchanged on exit.

 X - COMPLEX array of DIMENSION at least
 (1 + (n - 1)*abs(INCX)) when TRANS = 'N' or 'n'
 and at least
 (1 + (m - 1)*abs(INCX)) otherwise.
 Before entry, the incremented array X must contain the
 vector x.
 Unchanged on exit.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

 BETA - COMPLEX .
 On entry, BETA specifies the scalar beta. When BETA is
 supplied as zero then Y need not be set on input.
 Unchanged on exit.

 Y - COMPLEX array of DIMENSION at least
 (1 + (m - 1)*abs(INCY)) when TRANS = 'N' or 'n'
 and at least
 (1 + (n - 1)*abs(INCY)) otherwise.
 Before entry with BETA non-zero, the incremented array Y
 must contain the vector y. On exit, Y is overwritten by the
 updated vector y.

 INCY - INTEGER.
 On entry, INCY specifies the increment for the elements of
 Y. INCY must not be zero.
 Unchanged on exit.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 236

CGERC

 SUBROUTINE CGERC (M, N, ALPHA, X, INCX, Y, INCY, A, LDA)
 ***BEGIN PROLOGUE CGERC
 ***PURPOSE Perform conjugated rank 1 update of a complex general
 matrix.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE COMPLEX (SGERC-S, DGERC-D, CGERC-C)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 CGERC performs the rank 1 operation

 A := alpha*x*conjg(y') + A,

 where alpha is a scalar, x is an m element vector, y is an n element
 vector and A is an m by n matrix.

 Parameters
 ==========

 M - INTEGER.
 On entry, M specifies the number of rows of the matrix A.
 M must be at least zero.
 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the number of columns of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 ALPHA - COMPLEX .
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 X - COMPLEX array of dimension at least
 (1 + (m - 1)*abs(INCX)).
 Before entry, the incremented array X must contain the m
 element vector x.
 Unchanged on exit.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

 Y - COMPLEX array of dimension at least
 (1 + (n - 1)*abs(INCY)).
 Before entry, the incremented array Y must contain the n
 element vector y.
 Unchanged on exit.

 INCY - INTEGER.

SLATEC2 (AAAAAA through D9UPAK) - 237

 On entry, INCY specifies the increment for the elements of
 Y. INCY must not be zero.
 Unchanged on exit.

 A - COMPLEX array of DIMENSION (LDA, n).
 Before entry, the leading m by n part of the array A must
 contain the matrix of coefficients. On exit, A is
 overwritten by the updated matrix.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. LDA must be at least
 max(1, m).
 Unchanged on exit.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 238

CGERU

 SUBROUTINE CGERU (M, N, ALPHA, X, INCX, Y, INCY, A, LDA)
 ***BEGIN PROLOGUE CGERU
 ***PURPOSE Perform unconjugated rank 1 update of a complex general
 matrix.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE COMPLEX (SGERU-S, DGERU-D, CGERU-C)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 CGERU performs the rank 1 operation

 A := alpha*x*y' + A,

 where alpha is a scalar, x is an m element vector, y is an n element
 vector and A is an m by n matrix.

 Parameters
 ==========

 M - INTEGER.
 On entry, M specifies the number of rows of the matrix A.
 M must be at least zero.
 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the number of columns of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 ALPHA - COMPLEX .
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 X - COMPLEX array of dimension at least
 (1 + (m - 1)*abs(INCX)).
 Before entry, the incremented array X must contain the m
 element vector x.
 Unchanged on exit.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

 Y - COMPLEX array of dimension at least
 (1 + (n - 1)*abs(INCY)).
 Before entry, the incremented array Y must contain the n
 element vector y.
 Unchanged on exit.

 INCY - INTEGER.

SLATEC2 (AAAAAA through D9UPAK) - 239

 On entry, INCY specifies the increment for the elements of
 Y. INCY must not be zero.
 Unchanged on exit.

 A - COMPLEX array of DIMENSION (LDA, n).
 Before entry, the leading m by n part of the array A must
 contain the matrix of coefficients. On exit, A is
 overwritten by the updated matrix.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. LDA must be at least
 max(1, m).
 Unchanged on exit.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 240

CGESL

 SUBROUTINE CGESL (A, LDA, N, IPVT, B, JOB)
 ***BEGIN PROLOGUE CGESL
 ***PURPOSE Solve the complex system A*X=B or CTRANS(A)*X=B using the
 factors computed by CGECO or CGEFA.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2C1
 ***TYPE COMPLEX (SGESL-S, DGESL-D, CGESL-C)
 ***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, SOLVE
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 CGESL solves the complex system
 A * X = B or CTRANS(A) * X = B
 using the factors computed by CGECO or CGEFA.

 On Entry

 A COMPLEX(LDA, N)
 the output from CGECO or CGEFA.

 LDA INTEGER
 the leading dimension of the array A .

 N INTEGER
 the order of the matrix A .

 IPVT INTEGER(N)
 the pivot vector from CGECO or CGEFA.

 B COMPLEX(N)
 the right hand side vector.

 JOB INTEGER
 = 0 to solve A*X = B ,
 = nonzero to solve CTRANS(A)*X = B where
 CTRANS(A) is the conjugate transpose.

 On Return

 B the solution vector X .

 Error Condition

 A division by zero will occur if the input factor contains a
 zero on the diagonal. Technically this indicates singularity
 but it is often caused by improper arguments or improper
 setting of LDA . It will not occur if the subroutines are
 called correctly and if CGECO has set RCOND .GT. 0.0
 or CGEFA has set INFO .EQ. 0 .

 To compute INVERSE(A) * C where C is a matrix
 with P columns
 CALL CGECO(A,LDA,N,IPVT,RCOND,Z)
 IF (RCOND is too small) GO TO ...
 DO 10 J = 1, P
 CALL CGESL(A,LDA,N,IPVT,C(1,J),0)

SLATEC2 (AAAAAA through D9UPAK) - 241

 10 CONTINUE

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CAXPY, CDOTC
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 242

CGTSL

 SUBROUTINE CGTSL (N, C, D, E, B, INFO)
 ***BEGIN PROLOGUE CGTSL
 ***PURPOSE Solve a tridiagonal linear system.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2C2A
 ***TYPE COMPLEX (SGTSL-S, DGTSL-D, CGTSL-C)
 ***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, SOLVE, TRIDIAGONAL
 ***AUTHOR Dongarra, J., (ANL)
 ***DESCRIPTION

 CGTSL given a general tridiagonal matrix and a right hand
 side will find the solution.

 On Entry

 N INTEGER
 is the order of the tridiagonal matrix.

 C COMPLEX(N)
 is the subdiagonal of the tridiagonal matrix.
 C(2) through C(N) should contain the subdiagonal.
 On output C is destroyed.

 D COMPLEX(N)
 is the diagonal of the tridiagonal matrix.
 On output D is destroyed.

 E COMPLEX(N)
 is the superdiagonal of the tridiagonal matrix.
 E(1) through E(N-1) should contain the superdiagonal.
 On output E is destroyed.

 B COMPLEX(N)
 is the right hand side vector.

 On Return

 B is the solution vector.

 INFO INTEGER
 = 0 normal value.
 = K if the K-th element of the diagonal becomes
 exactly zero. The subroutine returns when
 this is detected.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)

SLATEC2 (AAAAAA through D9UPAK) - 243

 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 244

CH

 SUBROUTINE CH (NM, N, AR, AI, W, MATZ, ZR, ZI, FV1, FV2, FM1,
 + IERR)
 ***BEGIN PROLOGUE CH
 ***PURPOSE Compute the eigenvalues and, optionally, the eigenvectors
 of a complex Hermitian matrix.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4A3
 ***TYPE COMPLEX (RS-S, CH-C)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine calls the recommended sequence of
 subroutines from the eigensystem subroutine package (EISPACK)
 to find the eigenvalues and eigenvectors (if desired)
 of a COMPLEX HERMITIAN matrix.

 On INPUT

 NM must be set to the row dimension of the two-dimensional
 array parameters, AR, AI, ZR and ZI, as declared in the
 calling program dimension statement. NM is an INTEGER
 variable.

 N is the order of the matrix A=(AR,AI). N is an INTEGER
 variable. N must be less than or equal to NM.

 AR and AI contain the real and imaginary parts, respectively,
 of the complex Hermitian matrix. AR and AI are
 two-dimensional REAL arrays, dimensioned AR(NM,N)
 and AI(NM,N).

 MATZ is an INTEGER variable set equal to zero if only
 eigenvalues are desired. Otherwise, it is set to any
 non-zero integer for both eigenvalues and eigenvectors.

 On OUTPUT

 W contains the eigenvalues in ascending order.
 W is a one-dimensional REAL array, dimensioned W(N).

 ZR and ZI contain the real and imaginary parts, respectively,
 of the eigenvectors if MATZ is not zero. ZR and ZI are
 two-dimensional REAL arrays, dimensioned ZR(NM,N) and
 ZI(NM,N).

 IERR is an INTEGER flag set to
 Zero for normal return,
 10*N if N is greater than NM,
 J if the J-th eigenvalue has not been
 determined after a total of 30 iterations.
 The eigenvalues should be correct for indices
 1, 2, ..., IERR-1, but no eigenvectors are
 computed.

 FV1 and FV2 are one-dimensional REAL arrays used for

SLATEC2 (AAAAAA through D9UPAK) - 245

 temporary storage, dimensioned FV1(N) and FV2(N).

 FM1 is a two-dimensional REAL array used for temporary
 storage, dimensioned FM1(2,N).

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED HTRIBK, HTRIDI, TQL2, TQLRAT
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 246

CHBMV

 SUBROUTINE CHBMV (UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y,
 $ INCY)
 ***BEGIN PROLOGUE CHBMV
 ***PURPOSE Multiply a complex vector by a complex Hermitian band
 matrix.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE COMPLEX (SHBMV-S, DHBMV-D, CHBMV-C)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 CHBMV performs the matrix-vector operation

 y := alpha*A*x + beta*y,

 where alpha and beta are scalars, x and y are n element vectors and
 A is an n by n hermitian band matrix, with k super-diagonals.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the upper or lower
 triangular part of the band matrix A is being supplied as
 follows:

 UPLO = 'U' or 'u' The upper triangular part of A is
 being supplied.

 UPLO = 'L' or 'l' The lower triangular part of A is
 being supplied.

 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the order of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 K - INTEGER.
 On entry, K specifies the number of super-diagonals of the
 matrix A. K must satisfy 0 .le. K.
 Unchanged on exit.

 ALPHA - COMPLEX .
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A - COMPLEX array of DIMENSION (LDA, n).
 Before entry with UPLO = 'U' or 'u', the leading (k + 1)
 by n part of the array A must contain the upper triangular
 band part of the hermitian matrix, supplied column by

SLATEC2 (AAAAAA through D9UPAK) - 247

 column, with the leading diagonal of the matrix in row
 (k + 1) of the array, the first super-diagonal starting at
 position 2 in row k, and so on. The top left k by k triangle
 of the array A is not referenced.
 The following program segment will transfer the upper
 triangular part of a hermitian band matrix from conventional
 full matrix storage to band storage:

 DO 20, J = 1, N
 M = K + 1 - J
 DO 10, I = MAX(1, J - K), J
 A(M + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE

 Before entry with UPLO = 'L' or 'l', the leading (k + 1)
 by n part of the array A must contain the lower triangular
 band part of the hermitian matrix, supplied column by
 column, with the leading diagonal of the matrix in row 1 of
 the array, the first sub-diagonal starting at position 1 in
 row 2, and so on. The bottom right k by k triangle of the
 array A is not referenced.
 The following program segment will transfer the lower
 triangular part of a hermitian band matrix from conventional
 full matrix storage to band storage:

 DO 20, J = 1, N
 M = 1 - J
 DO 10, I = J, MIN(N, J + K)
 A(M + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE

 Note that the imaginary parts of the diagonal elements need
 not be set and are assumed to be zero.
 Unchanged on exit.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. LDA must be at least
 (k + 1).
 Unchanged on exit.

 X - COMPLEX array of DIMENSION at least
 (1 + (n - 1)*abs(INCX)).
 Before entry, the incremented array X must contain the
 vector x.
 Unchanged on exit.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

 BETA - COMPLEX .
 On entry, BETA specifies the scalar beta.
 Unchanged on exit.

 Y - COMPLEX array of DIMENSION at least
 (1 + (n - 1)*abs(INCY)).

SLATEC2 (AAAAAA through D9UPAK) - 248

 Before entry, the incremented array Y must contain the
 vector y. On exit, Y is overwritten by the updated vector y.

 INCY - INTEGER.
 On entry, INCY specifies the increment for the elements of
 Y. INCY must not be zero.
 Unchanged on exit.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 249

CHEMM

 SUBROUTINE CHEMM (SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA,
 $ C, LDC)
 ***BEGIN PROLOGUE CHEMM
 ***PURPOSE Multiply a complex general matrix by a complex Hermitian
 matrix.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B6
 ***TYPE COMPLEX (SHEMM-S, DHEMM-D, CHEMM-C)
 ***KEYWORDS LEVEL 3 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J., (ANL)
 Duff, I., (AERE)
 Du Croz, J., (NAG)
 Hammarling, S. (NAG)
 ***DESCRIPTION

 CHEMM performs one of the matrix-matrix operations

 C := alpha*A*B + beta*C,

 or

 C := alpha*B*A + beta*C,

 where alpha and beta are scalars, A is an hermitian matrix and B and
 C are m by n matrices.

 Parameters
 ==========

 SIDE - CHARACTER*1.
 On entry, SIDE specifies whether the hermitian matrix A
 appears on the left or right in the operation as follows:

 SIDE = 'L' or 'l' C := alpha*A*B + beta*C,

 SIDE = 'R' or 'r' C := alpha*B*A + beta*C,

 Unchanged on exit.

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the upper or lower
 triangular part of the hermitian matrix A is to be
 referenced as follows:

 UPLO = 'U' or 'u' Only the upper triangular part of the
 hermitian matrix is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular part of the
 hermitian matrix is to be referenced.

 Unchanged on exit.

 M - INTEGER.
 On entry, M specifies the number of rows of the matrix C.
 M must be at least zero.
 Unchanged on exit.

SLATEC2 (AAAAAA through D9UPAK) - 250

 N - INTEGER.
 On entry, N specifies the number of columns of the matrix C.
 N must be at least zero.
 Unchanged on exit.

 ALPHA - COMPLEX .
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A - COMPLEX array of DIMENSION (LDA, ka), where ka is
 m when SIDE = 'L' or 'l' and is n otherwise.
 Before entry with SIDE = 'L' or 'l', the m by m part of
 the array A must contain the hermitian matrix, such that
 when UPLO = 'U' or 'u', the leading m by m upper triangular
 part of the array A must contain the upper triangular part
 of the hermitian matrix and the strictly lower triangular
 part of A is not referenced, and when UPLO = 'L' or 'l',
 the leading m by m lower triangular part of the array A
 must contain the lower triangular part of the hermitian
 matrix and the strictly upper triangular part of A is not
 referenced.
 Before entry with SIDE = 'R' or 'r', the n by n part of
 the array A must contain the hermitian matrix, such that
 when UPLO = 'U' or 'u', the leading n by n upper triangular
 part of the array A must contain the upper triangular part
 of the hermitian matrix and the strictly lower triangular
 part of A is not referenced, and when UPLO = 'L' or 'l',
 the leading n by n lower triangular part of the array A
 must contain the lower triangular part of the hermitian
 matrix and the strictly upper triangular part of A is not
 referenced.
 Note that the imaginary parts of the diagonal elements need
 not be set, they are assumed to be zero.
 Unchanged on exit.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. When SIDE = 'L' or 'l' then
 LDA must be at least max(1, m), otherwise LDA must be at
 least max(1, n).
 Unchanged on exit.

 B - COMPLEX array of DIMENSION (LDB, n).
 Before entry, the leading m by n part of the array B must
 contain the matrix B.
 Unchanged on exit.

 LDB - INTEGER.
 On entry, LDB specifies the first dimension of B as declared
 in the calling (sub) program. LDB must be at least
 max(1, m).
 Unchanged on exit.

 BETA - COMPLEX .
 On entry, BETA specifies the scalar beta. When BETA is
 supplied as zero then C need not be set on input.
 Unchanged on exit.

 C - COMPLEX array of DIMENSION (LDC, n).

SLATEC2 (AAAAAA through D9UPAK) - 251

 Before entry, the leading m by n part of the array C must
 contain the matrix C, except when beta is zero, in which
 case C need not be set on entry.
 On exit, the array C is overwritten by the m by n updated
 matrix.

 LDC - INTEGER.
 On entry, LDC specifies the first dimension of C as declared
 in the calling (sub) program. LDC must be at least
 max(1, m).
 Unchanged on exit.

 ***REFERENCES Dongarra, J., Du Croz, J., Duff, I., and Hammarling, S.
 A set of level 3 basic linear algebra subprograms.
 ACM TOMS, Vol. 16, No. 1, pp. 1-17, March 1990.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 890208 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 252

CHEMV

 SUBROUTINE CHEMV (UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
 ***BEGIN PROLOGUE CHEMV
 ***PURPOSE Multiply a complex vector by a complex Hermitian matrix.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE COMPLEX (SHEMV-S, DHEMV-D, CHEMV-C)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 CHEMV performs the matrix-vector operation

 y := alpha*A*x + beta*y,

 where alpha and beta are scalars, x and y are n element vectors and
 A is an n by n hermitian matrix.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the upper or lower
 triangular part of the array A is to be referenced as
 follows:

 UPLO = 'U' or 'u' Only the upper triangular part of A
 is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular part of A
 is to be referenced.

 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the order of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 ALPHA - COMPLEX .
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A - COMPLEX array of DIMENSION (LDA, n).
 Before entry with UPLO = 'U' or 'u', the leading n by n
 upper triangular part of the array A must contain the upper
 triangular part of the hermitian matrix and the strictly
 lower triangular part of A is not referenced.
 Before entry with UPLO = 'L' or 'l', the leading n by n
 lower triangular part of the array A must contain the lower
 triangular part of the hermitian matrix and the strictly
 upper triangular part of A is not referenced.
 Note that the imaginary parts of the diagonal elements need
 not be set and are assumed to be zero.

SLATEC2 (AAAAAA through D9UPAK) - 253

 Unchanged on exit.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. LDA must be at least
 max(1, n).
 Unchanged on exit.

 X - COMPLEX array of dimension at least
 (1 + (n - 1)*abs(INCX)).
 Before entry, the incremented array X must contain the n
 element vector x.
 Unchanged on exit.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

 BETA - COMPLEX .
 On entry, BETA specifies the scalar beta. When BETA is
 supplied as zero then Y need not be set on input.
 Unchanged on exit.

 Y - COMPLEX array of dimension at least
 (1 + (n - 1)*abs(INCY)).
 Before entry, the incremented array Y must contain the n
 element vector y. On exit, Y is overwritten by the updated
 vector y.

 INCY - INTEGER.
 On entry, INCY specifies the increment for the elements of
 Y. INCY must not be zero.
 Unchanged on exit.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 254

CHER

 SUBROUTINE CHER (UPLO, N, ALPHA, X, INCX, A, LDA)
 ***BEGIN PROLOGUE CHER
 ***PURPOSE Perform Hermitian rank 1 update of a complex Hermitian
 matrix.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE COMPLEX (SHER-S, DHER-D, CHER-C)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 CHER performs the hermitian rank 1 operation

 A := alpha*x*conjg(x') + A,

 where alpha is a real scalar, x is an n element vector and A is an
 n by n hermitian matrix.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the upper or lower
 triangular part of the array A is to be referenced as
 follows:

 UPLO = 'U' or 'u' Only the upper triangular part of A
 is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular part of A
 is to be referenced.

 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the order of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 ALPHA - REAL .
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 X - COMPLEX array of dimension at least
 (1 + (n - 1)*abs(INCX)).
 Before entry, the incremented array X must contain the n
 element vector x.
 Unchanged on exit.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

SLATEC2 (AAAAAA through D9UPAK) - 255

 A - COMPLEX array of DIMENSION (LDA, n).
 Before entry with UPLO = 'U' or 'u', the leading n by n
 upper triangular part of the array A must contain the upper
 triangular part of the hermitian matrix and the strictly
 lower triangular part of A is not referenced. On exit, the
 upper triangular part of the array A is overwritten by the
 upper triangular part of the updated matrix.
 Before entry with UPLO = 'L' or 'l', the leading n by n
 lower triangular part of the array A must contain the lower
 triangular part of the hermitian matrix and the strictly
 upper triangular part of A is not referenced. On exit, the
 lower triangular part of the array A is overwritten by the
 lower triangular part of the updated matrix.
 Note that the imaginary parts of the diagonal elements need
 not be set, they are assumed to be zero, and on exit they
 are set to zero.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. LDA must be at least
 max(1, n).
 Unchanged on exit.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 256

CHER2

 SUBROUTINE CHER2 (UPLO, N, ALPHA, X, INCX, Y, INCY, A, LDA)
 ***BEGIN PROLOGUE CHER2
 ***PURPOSE Perform Hermitian rank 2 update of a complex Hermitian
 matrix.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE COMPLEX (SHER2-S, DHER2-D, CHER2-C)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 CHER2 performs the hermitian rank 2 operation

 A := alpha*x*conjg(y') + conjg(alpha)*y*conjg(x') + A,

 where alpha is a scalar, x and y are n element vectors and A is an n
 by n hermitian matrix.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the upper or lower
 triangular part of the array A is to be referenced as
 follows:

 UPLO = 'U' or 'u' Only the upper triangular part of A
 is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular part of A
 is to be referenced.

 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the order of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 ALPHA - COMPLEX .
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 X - COMPLEX array of dimension at least
 (1 + (n - 1)*abs(INCX)).
 Before entry, the incremented array X must contain the n
 element vector x.
 Unchanged on exit.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

SLATEC2 (AAAAAA through D9UPAK) - 257

 Y - COMPLEX array of dimension at least
 (1 + (n - 1)*abs(INCY)).
 Before entry, the incremented array Y must contain the n
 element vector y.
 Unchanged on exit.

 INCY - INTEGER.
 On entry, INCY specifies the increment for the elements of
 Y. INCY must not be zero.
 Unchanged on exit.

 A - COMPLEX array of DIMENSION (LDA, n).
 Before entry with UPLO = 'U' or 'u', the leading n by n
 upper triangular part of the array A must contain the upper
 triangular part of the hermitian matrix and the strictly
 lower triangular part of A is not referenced. On exit, the
 upper triangular part of the array A is overwritten by the
 upper triangular part of the updated matrix.
 Before entry with UPLO = 'L' or 'l', the leading n by n
 lower triangular part of the array A must contain the lower
 triangular part of the hermitian matrix and the strictly
 upper triangular part of A is not referenced. On exit, the
 lower triangular part of the array A is overwritten by the
 lower triangular part of the updated matrix.
 Note that the imaginary parts of the diagonal elements need
 not be set, they are assumed to be zero, and on exit they
 are set to zero.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. LDA must be at least
 max(1, n).
 Unchanged on exit.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 258

CHER2K

 SUBROUTINE CHER2K (UPLO, TRANS, N, K, ALPHA, A, LDA, B, LDB, BETA,
 $ C, LDC)
 ***BEGIN PROLOGUE CHER2K
 ***PURPOSE Perform Hermitian rank 2k update of a complex.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B6
 ***TYPE COMPLEX (SHER2-S, DHER2-D, CHER2-C, CHER2K-C)
 ***KEYWORDS LEVEL 3 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J., (ANL)
 Duff, I., (AERE)
 Du Croz, J., (NAG)
 Hammarling, S. (NAG)
 ***DESCRIPTION

 CHER2K performs one of the hermitian rank 2k operations

 C := alpha*A*conjg(B') + conjg(alpha)*B*conjg(A') + beta*C,

 or

 C := alpha*conjg(A')*B + conjg(alpha)*conjg(B')*A + beta*C,

 where alpha and beta are scalars with beta real, C is an n by n
 hermitian matrix and A and B are n by k matrices in the first case
 and k by n matrices in the second case.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the upper or lower
 triangular part of the array C is to be referenced as
 follows:

 UPLO = 'U' or 'u' Only the upper triangular part of C
 is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular part of C
 is to be referenced.

 Unchanged on exit.

 TRANS - CHARACTER*1.
 On entry, TRANS specifies the operation to be performed as
 follows:

 TRANS = 'N' or 'n' C := alpha*A*conjg(B') +
 conjg(alpha)*B*conjg(A') +
 beta*C.

 TRANS = 'C' or 'c' C := alpha*conjg(A')*B +
 conjg(alpha)*conjg(B')*A +
 beta*C.

 Unchanged on exit.

SLATEC2 (AAAAAA through D9UPAK) - 259

 N - INTEGER.
 On entry, N specifies the order of the matrix C. N must be
 at least zero.
 Unchanged on exit.

 K - INTEGER.
 On entry with TRANS = 'N' or 'n', K specifies the number
 of columns of the matrices A and B, and on entry with
 TRANS = 'C' or 'c', K specifies the number of rows of the
 matrices A and B. K must be at least zero.
 Unchanged on exit.

 ALPHA - COMPLEX .
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A - COMPLEX array of DIMENSION (LDA, ka), where ka is
 k when TRANS = 'N' or 'n', and is n otherwise.
 Before entry with TRANS = 'N' or 'n', the leading n by k
 part of the array A must contain the matrix A, otherwise
 the leading k by n part of the array A must contain the
 matrix A.
 Unchanged on exit.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. When TRANS = 'N' or 'n'
 then LDA must be at least max(1, n), otherwise LDA must
 be at least max(1, k).
 Unchanged on exit.

 B - COMPLEX array of DIMENSION (LDB, kb), where kb is
 k when TRANS = 'N' or 'n', and is n otherwise.
 Before entry with TRANS = 'N' or 'n', the leading n by k
 part of the array B must contain the matrix B, otherwise
 the leading k by n part of the array B must contain the
 matrix B.
 Unchanged on exit.

 LDB - INTEGER.
 On entry, LDB specifies the first dimension of B as declared
 in the calling (sub) program. When TRANS = 'N' or 'n'
 then LDB must be at least max(1, n), otherwise LDB must
 be at least max(1, k).
 Unchanged on exit.

 BETA - REAL .
 On entry, BETA specifies the scalar beta.
 Unchanged on exit.

 C - COMPLEX array of DIMENSION (LDC, n).
 Before entry with UPLO = 'U' or 'u', the leading n by n
 upper triangular part of the array C must contain the upper
 triangular part of the hermitian matrix and the strictly
 lower triangular part of C is not referenced. On exit, the
 upper triangular part of the array C is overwritten by the
 upper triangular part of the updated matrix.
 Before entry with UPLO = 'L' or 'l', the leading n by n
 lower triangular part of the array C must contain the lower
 triangular part of the hermitian matrix and the strictly

SLATEC2 (AAAAAA through D9UPAK) - 260

 upper triangular part of C is not referenced. On exit, the
 lower triangular part of the array C is overwritten by the
 lower triangular part of the updated matrix.
 Note that the imaginary parts of the diagonal elements need
 not be set, they are assumed to be zero, and on exit they
 are set to zero.

 LDC - INTEGER.
 On entry, LDC specifies the first dimension of C as declared
 in the calling (sub) program. LDC must be at least
 max(1, n).
 Unchanged on exit.

 ***REFERENCES Dongarra, J., Du Croz, J., Duff, I., and Hammarling, S.
 A set of level 3 basic linear algebra subprograms.
 ACM TOMS, Vol. 16, No. 1, pp. 1-17, March 1990.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 890208 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 261

CHERK

 SUBROUTINE CHERK (UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, C, LDC)
 ***BEGIN PROLOGUE CHERK
 ***PURPOSE Perform Hermitian rank k update of a complex Hermitian
 matrix.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B6
 ***TYPE COMPLEX (SHERK-S, DHERK-D, CHERK-C)
 ***KEYWORDS LEVEL 3 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J., (ANL)
 Duff, I., (AERE)
 Du Croz, J., (NAG)
 Hammarling, S. (NAG)
 ***DESCRIPTION

 CHERK performs one of the hermitian rank k operations

 C := alpha*A*conjg(A') + beta*C,

 or

 C := alpha*conjg(A')*A + beta*C,

 where alpha and beta are real scalars, C is an n by n hermitian
 matrix and A is an n by k matrix in the first case and a k by n
 matrix in the second case.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the upper or lower
 triangular part of the array C is to be referenced as
 follows:

 UPLO = 'U' or 'u' Only the upper triangular part of C
 is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular part of C
 is to be referenced.

 Unchanged on exit.

 TRANS - CHARACTER*1.
 On entry, TRANS specifies the operation to be performed as
 follows:

 TRANS = 'N' or 'n' C := alpha*A*conjg(A') + beta*C.

 TRANS = 'C' or 'c' C := alpha*conjg(A')*A + beta*C.

 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the order of the matrix C. N must be
 at least zero.
 Unchanged on exit.

SLATEC2 (AAAAAA through D9UPAK) - 262

 K - INTEGER.
 On entry with TRANS = 'N' or 'n', K specifies the number
 of columns of the matrix A, and on entry with
 TRANS = 'C' or 'c', K specifies the number of rows of the
 matrix A. K must be at least zero.
 Unchanged on exit.

 ALPHA - REAL .
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A - COMPLEX array of DIMENSION (LDA, ka), where ka is
 k when TRANS = 'N' or 'n', and is n otherwise.
 Before entry with TRANS = 'N' or 'n', the leading n by k
 part of the array A must contain the matrix A, otherwise
 the leading k by n part of the array A must contain the
 matrix A.
 Unchanged on exit.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. When TRANS = 'N' or 'n'
 then LDA must be at least max(1, n), otherwise LDA must
 be at least max(1, k).
 Unchanged on exit.

 BETA - REAL .
 On entry, BETA specifies the scalar beta.
 Unchanged on exit.

 C - COMPLEX array of DIMENSION (LDC, n).
 Before entry with UPLO = 'U' or 'u', the leading n by n
 upper triangular part of the array C must contain the upper
 triangular part of the hermitian matrix and the strictly
 lower triangular part of C is not referenced. On exit, the
 upper triangular part of the array C is overwritten by the
 upper triangular part of the updated matrix.
 Before entry with UPLO = 'L' or 'l', the leading n by n
 lower triangular part of the array C must contain the lower
 triangular part of the hermitian matrix and the strictly
 upper triangular part of C is not referenced. On exit, the
 lower triangular part of the array C is overwritten by the
 lower triangular part of the updated matrix.
 Note that the imaginary parts of the diagonal elements need
 not be set, they are assumed to be zero, and on exit they
 are set to zero.

 LDC - INTEGER.
 On entry, LDC specifies the first dimension of C as declared
 in the calling (sub) program. LDC must be at least
 max(1, n).
 Unchanged on exit.

 ***REFERENCES Dongarra, J., Du Croz, J., Duff, I., and Hammarling, S.
 A set of level 3 basic linear algebra subprograms.
 ACM TOMS, Vol. 16, No. 1, pp. 1-17, March 1990.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 890208 DATE WRITTEN

SLATEC2 (AAAAAA through D9UPAK) - 263

 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 264

CHFDV

 SUBROUTINE CHFDV (X1, X2, F1, F2, D1, D2, NE, XE, FE, DE, NEXT,
 + IERR)
 ***BEGIN PROLOGUE CHFDV
 ***PURPOSE Evaluate a cubic polynomial given in Hermite form and its
 first derivative at an array of points. While designed for
 use by PCHFD, it may be useful directly as an evaluator
 for a piecewise cubic Hermite function in applications,
 such as graphing, where the interval is known in advance.
 If only function values are required, use CHFEV instead.
 ***LIBRARY SLATEC (PCHIP)
 ***CATEGORY E3, H1
 ***TYPE SINGLE PRECISION (CHFDV-S, DCHFDV-D)
 ***KEYWORDS CUBIC HERMITE DIFFERENTIATION, CUBIC HERMITE EVALUATION,
 CUBIC POLYNOMIAL EVALUATION, PCHIP
 ***AUTHOR Fritsch, F. N., (LLNL)
 Lawrence Livermore National Laboratory
 P.O. Box 808 (L-316)
 Livermore, CA 94550
 FTS 532-4275, (510) 422-4275
 ***DESCRIPTION

 CHFDV: Cubic Hermite Function and Derivative Evaluator

 Evaluates the cubic polynomial determined by function values
 F1,F2 and derivatives D1,D2 on interval (X1,X2), together with
 its first derivative, at the points XE(J), J=1(1)NE.

 If only function values are required, use CHFEV, instead.

 --

 Calling sequence:

 INTEGER NE, NEXT(2), IERR
 REAL X1, X2, F1, F2, D1, D2, XE(NE), FE(NE), DE(NE)

 CALL CHFDV (X1,X2, F1,F2, D1,D2, NE, XE, FE, DE, NEXT, IERR)

 Parameters:

 X1,X2 -- (input) endpoints of interval of definition of cubic.
 (Error return if X1.EQ.X2 .)

 F1,F2 -- (input) values of function at X1 and X2, respectively.

 D1,D2 -- (input) values of derivative at X1 and X2, respectively.

 NE -- (input) number of evaluation points. (Error return if
 NE.LT.1 .)

 XE -- (input) real array of points at which the functions are to
 be evaluated. If any of the XE are outside the interval
 [X1,X2], a warning error is returned in NEXT.

 FE -- (output) real array of values of the cubic function defined
 by X1,X2, F1,F2, D1,D2 at the points XE.

SLATEC2 (AAAAAA through D9UPAK) - 265

 DE -- (output) real array of values of the first derivative of
 the same function at the points XE.

 NEXT -- (output) integer array indicating number of extrapolation
 points:
 NEXT(1) = number of evaluation points to left of interval.
 NEXT(2) = number of evaluation points to right of interval.

 IERR -- (output) error flag.
 Normal return:
 IERR = 0 (no errors).
 "Recoverable" errors:
 IERR = -1 if NE.LT.1 .
 IERR = -2 if X1.EQ.X2 .
 (Output arrays have not been changed in either case.)

 ***REFERENCES (NONE)
 ***ROUTINES CALLED XERMSG
 ***REVISION HISTORY (YYMMDD)
 811019 DATE WRITTEN
 820803 Minor cosmetic changes for release 1.
 890411 Added SAVE statements (Vers. 3.2).
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 266

CHFEV

 SUBROUTINE CHFEV (X1, X2, F1, F2, D1, D2, NE, XE, FE, NEXT, IERR)
 ***BEGIN PROLOGUE CHFEV
 ***PURPOSE Evaluate a cubic polynomial given in Hermite form at an
 array of points. While designed for use by PCHFE, it may
 be useful directly as an evaluator for a piecewise cubic
 Hermite function in applications, such as graphing, where
 the interval is known in advance.
 ***LIBRARY SLATEC (PCHIP)
 ***CATEGORY E3
 ***TYPE SINGLE PRECISION (CHFEV-S, DCHFEV-D)
 ***KEYWORDS CUBIC HERMITE EVALUATION, CUBIC POLYNOMIAL EVALUATION,
 PCHIP
 ***AUTHOR Fritsch, F. N., (LLNL)
 Lawrence Livermore National Laboratory
 P.O. Box 808 (L-316)
 Livermore, CA 94550
 FTS 532-4275, (510) 422-4275
 ***DESCRIPTION

 CHFEV: Cubic Hermite Function EValuator

 Evaluates the cubic polynomial determined by function values
 F1,F2 and derivatives D1,D2 on interval (X1,X2) at the points
 XE(J), J=1(1)NE.

 --

 Calling sequence:

 INTEGER NE, NEXT(2), IERR
 REAL X1, X2, F1, F2, D1, D2, XE(NE), FE(NE)

 CALL CHFEV (X1,X2, F1,F2, D1,D2, NE, XE, FE, NEXT, IERR)

 Parameters:

 X1,X2 -- (input) endpoints of interval of definition of cubic.
 (Error return if X1.EQ.X2 .)

 F1,F2 -- (input) values of function at X1 and X2, respectively.

 D1,D2 -- (input) values of derivative at X1 and X2, respectively.

 NE -- (input) number of evaluation points. (Error return if
 NE.LT.1 .)

 XE -- (input) real array of points at which the function is to be
 evaluated. If any of the XE are outside the interval
 [X1,X2], a warning error is returned in NEXT.

 FE -- (output) real array of values of the cubic function defined
 by X1,X2, F1,F2, D1,D2 at the points XE.

 NEXT -- (output) integer array indicating number of extrapolation
 points:
 NEXT(1) = number of evaluation points to left of interval.

SLATEC2 (AAAAAA through D9UPAK) - 267

 NEXT(2) = number of evaluation points to right of interval.

 IERR -- (output) error flag.
 Normal return:
 IERR = 0 (no errors).
 "Recoverable" errors:
 IERR = -1 if NE.LT.1 .
 IERR = -2 if X1.EQ.X2 .
 (The FE-array has not been changed in either case.)

 ***REFERENCES (NONE)
 ***ROUTINES CALLED XERMSG
 ***REVISION HISTORY (YYMMDD)
 811019 DATE WRITTEN
 820803 Minor cosmetic changes for release 1.
 890411 Added SAVE statements (Vers. 3.2).
 890531 Changed all specific intrinsics to generic. (WRB)
 890703 Corrected category record. (WRB)
 890703 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 268

CHICO

 SUBROUTINE CHICO (A, LDA, N, KPVT, RCOND, Z)
 ***BEGIN PROLOGUE CHICO
 ***PURPOSE Factor a complex Hermitian matrix by elimination with sym-
 metric pivoting and estimate the condition of the matrix.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2D1A
 ***TYPE COMPLEX (SSICO-S, DSICO-D, CHICO-C, CSICO-C)
 ***KEYWORDS CONDITION NUMBER, HERMITIAN, LINEAR ALGEBRA, LINPACK,
 MATRIX FACTORIZATION
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 CHICO factors a complex Hermitian matrix by elimination with
 symmetric pivoting and estimates the condition of the matrix.

 If RCOND is not needed, CHIFA is slightly faster.
 To solve A*X = B , follow CHICO by CHISL.
 To compute INVERSE(A)*C , follow CHICO by CHISL.
 To compute INVERSE(A) , follow CHICO by CHIDI.
 To compute DETERMINANT(A) , follow CHICO by CHIDI.
 To compute INERTIA(A), follow CHICO by CHIDI.

 On Entry

 A COMPLEX(LDA, N)
 the Hermitian matrix to be factored.
 Only the diagonal and upper triangle are used.

 LDA INTEGER
 the leading dimension of the array A .

 N INTEGER
 the order of the matrix A .

 Output

 A a block diagonal matrix and the multipliers which
 were used to obtain it.
 The factorization can be written A = U*D*CTRANS(U)
 where U is a product of permutation and unit
 upper triangular matrices , CTRANS(U) is the
 conjugate transpose of U , and D is block diagonal
 with 1 by 1 and 2 by 2 blocks.

 KVPT INTEGER(N)
 an integer vector of pivot indices.

 RCOND REAL
 an estimate of the reciprocal condition of A .
 For the system A*X = B , relative perturbations
 in A and B of size EPSILON may cause
 relative perturbations in X of size EPSILON/RCOND .
 If RCOND is so small that the logical expression
 1.0 + RCOND .EQ. 1.0
 is true, then A may be singular to working
 precision. In particular, RCOND is zero if

SLATEC2 (AAAAAA through D9UPAK) - 269

 exact singularity is detected or the estimate
 underflows.

 Z COMPLEX(N)
 a work vector whose contents are usually unimportant.
 If A is close to a singular matrix, then Z is
 an approximate null vector in the sense that
 NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CAXPY, CDOTC, CHIFA, CSSCAL, SCASUM
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 891107 Modified routine equivalence list. (WRB)
 891107 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 270

CHIDI

 SUBROUTINE CHIDI (A, LDA, N, KPVT, DET, INERT, WORK, JOB)
 ***BEGIN PROLOGUE CHIDI
 ***PURPOSE Compute the determinant, inertia and inverse of a complex
 Hermitian matrix using the factors obtained from CHIFA.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2D1A, D3D1A
 ***TYPE COMPLEX (SSIDI-S, DSISI-D, CHIDI-C, CSIDI-C)
 ***KEYWORDS DETERMINANT, HERMITIAN, INVERSE, LINEAR ALGEBRA, LINPACK,
 MATRIX
 ***AUTHOR Bunch, J., (UCSD)
 ***DESCRIPTION

 CHIDI computes the determinant, inertia and inverse
 of a complex Hermitian matrix using the factors from CHIFA.

 On Entry

 A COMPLEX(LDA,N)
 the output from CHIFA.

 LDA INTEGER
 the leading dimension of the array A.

 N INTEGER
 the order of the matrix A.

 KVPT INTEGER(N)
 the pivot vector from CHIFA.

 WORK COMPLEX(N)
 work vector. Contents destroyed.

 JOB INTEGER
 JOB has the decimal expansion ABC where
 if C .NE. 0, the inverse is computed,
 if B .NE. 0, the determinant is computed,
 if A .NE. 0, the inertia is computed.

 For example, JOB = 111 gives all three.

 On Return

 Variables not requested by JOB are not used.

 A contains the upper triangle of the inverse of
 the original matrix. The strict lower triangle
 is never referenced.

 DET REAL(2)
 determinant of original matrix.
 Determinant = DET(1) * 10.0**DET(2)
 with 1.0 .LE. ABS(DET(1)) .LT. 10.0
 or DET(1) = 0.0.

 INERT INTEGER(3)
 the inertia of the original matrix.

SLATEC2 (AAAAAA through D9UPAK) - 271

 INERT(1) = number of positive eigenvalues.
 INERT(2) = number of negative eigenvalues.
 INERT(3) = number of zero eigenvalues.

 Error Condition

 A division by zero may occur if the inverse is requested
 and CHICO has set RCOND .EQ. 0.0
 or CHIFA has set INFO .NE. 0 .

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CAXPY, CCOPY, CDOTC, CSWAP
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 891107 Modified routine equivalence list. (WRB)
 891107 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 272

CHIEV

 SUBROUTINE CHIEV (A, LDA, N, E, V, LDV, WORK, JOB, INFO)
 ***BEGIN PROLOGUE CHIEV
 ***PURPOSE Compute the eigenvalues and, optionally, the eigenvectors
 of a complex Hermitian matrix.
 ***LIBRARY SLATEC
 ***CATEGORY D4A3
 ***TYPE COMPLEX (SSIEV-S, CHIEV-C)
 ***KEYWORDS COMPLEX HERMITIAN, EIGENVALUES, EIGENVECTORS, MATRIX,
 SYMMETRIC
 ***AUTHOR Kahaner, D. K., (NBS)
 Moler, C. B., (U. of New Mexico)
 Stewart, G. W., (U. of Maryland)
 ***DESCRIPTION

 David Kahaner, Cleve Moler, G. W. Stewart,
 N.B.S. U.N.M. N.B.S./U.MD.

 Abstract
 CHIEV computes the eigenvalues and, optionally,
 the eigenvectors of a complex Hermitian matrix.

 Call Sequence Parameters-
 (the values of parameters marked with * (star) will be changed
 by CHIEV.)

 A* COMPLEX(LDA,N)
 complex Hermitian input matrix.
 Only the upper triangle of A need be
 filled in. Elements on diagonal must be real.

 LDA INTEGER
 set by the user to
 the leading dimension of the complex array A.

 N INTEGER
 set by the user to
 the order of the matrices A and V, and
 the number of elements in E.

 E* REAL(N)
 on return from CHIEV E contains the eigenvalues of A.
 See also INFO below.

 V* COMPLEX(LDV,N)
 on return from CHIEV if the user has set JOB
 = 0 V is not referenced.
 = nonzero the N eigenvectors of A are stored in the
 first N columns of V. See also INFO below.

 LDV INTEGER
 set by the user to
 the leading dimension of the array V if JOB is also
 set nonzero. In that case N must be .LE. LDV.
 If JOB is set to zero LDV is not referenced.

 WORK* REAL(4N)

SLATEC2 (AAAAAA through D9UPAK) - 273

 temporary storage vector. Contents changed by CHIEV.

 JOB INTEGER
 set by the user to
 = 0 eigenvalues only to be calculated by CHIEV.
 Neither V nor LDV are referenced.
 = nonzero eigenvalues and vectors to be calculated.
 In this case A and V must be distinct arrays
 also if LDA .GT. LDV CHIEV changes all the
 elements of A thru column N. If LDA < LDV
 CHIEV changes all the elements of V through
 column N. If LDA = LDV only A(I,J) and V(I,
 J) for I,J = 1,...,N are changed by CHIEV.

 INFO* INTEGER
 on return from CHIEV the value of INFO is
 = 0 normal return, calculation successful.
 = K if the eigenvalue iteration fails to converge,
 eigenvalues (and eigenvectors if requested)
 1 through K-1 are correct.

 Error Messages
 No. 1 recoverable N is greater than LDA
 No. 2 recoverable N is less than one.
 No. 3 recoverable JOB is nonzero and N is greater than LDV
 No. 4 warning LDA > LDV, elements of A other than the
 N by N input elements have been changed
 No. 5 warning LDA < LDV, elements of V other than the
 N by N output elements have been changed
 No. 6 recoverable nonreal element on diagonal of A.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED HTRIBK, HTRIDI, IMTQL2, SCOPY, SCOPYM, TQLRAT,
 XERMSG
 ***REVISION HISTORY (YYMMDD)
 800808 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 274

CHIFA

 SUBROUTINE CHIFA (A, LDA, N, KPVT, INFO)
 ***BEGIN PROLOGUE CHIFA
 ***PURPOSE Factor a complex Hermitian matrix by elimination
 (symmetric pivoting).
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2D1A
 ***TYPE COMPLEX (SSIFA-S, DSIFA-D, CHIFA-C, CSIFA-C)
 ***KEYWORDS HERMITIAN, LINEAR ALGEBRA, LINPACK, MATRIX FACTORIZATION
 ***AUTHOR Bunch, J., (UCSD)
 ***DESCRIPTION

 CHIFA factors a complex Hermitian matrix by elimination
 with symmetric pivoting.

 To solve A*X = B , follow CHIFA by CHISL.
 To compute INVERSE(A)*C , follow CHIFA by CHISL.
 To compute DETERMINANT(A) , follow CHIFA by CHIDI.
 To compute INERTIA(A) , follow CHIFA by CHIDI.
 To compute INVERSE(A) , follow CHIFA by CHIDI.

 On Entry

 A COMPLEX(LDA,N)
 the Hermitian matrix to be factored.
 Only the diagonal and upper triangle are used.

 LDA INTEGER
 the leading dimension of the array A .

 N INTEGER
 the order of the matrix A .

 On Return

 A a block diagonal matrix and the multipliers which
 were used to obtain it.
 The factorization can be written A = U*D*CTRANS(U)
 where U is a product of permutation and unit
 upper triangular matrices , CTRANS(U) is the
 conjugate transpose of U , and D is block diagonal
 with 1 by 1 and 2 by 2 blocks.

 KVPT INTEGER(N)
 an integer vector of pivot indices.

 INFO INTEGER
 = 0 normal value.
 = K if the K-th pivot block is singular. This is
 not an error condition for this subroutine,
 but it does indicate that CHISL or CHIDI may
 divide by zero if called.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CAXPY, CSWAP, ICAMAX
 ***REVISION HISTORY (YYMMDD)

SLATEC2 (AAAAAA through D9UPAK) - 275

 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 891107 Modified routine equivalence list. (WRB)
 891107 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 276

CHISL

 SUBROUTINE CHISL (A, LDA, N, KPVT, B)
 ***BEGIN PROLOGUE CHISL
 ***PURPOSE Solve the complex Hermitian system using factors obtained
 from CHIFA.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2D1A
 ***TYPE COMPLEX (SSISL-S, DSISL-D, CHISL-C, CSISL-C)
 ***KEYWORDS HERMITIAN, LINEAR ALGEBRA, LINPACK, MATRIX, SOLVE
 ***AUTHOR Bunch, J., (UCSD)
 ***DESCRIPTION

 CHISL solves the complex Hermitian system
 A * X = B
 using the factors computed by CHIFA.

 On Entry

 A COMPLEX(LDA,N)
 the output from CHIFA.

 LDA INTEGER
 the leading dimension of the array A .

 N INTEGER
 the order of the matrix A .

 KVPT INTEGER(N)
 the pivot vector from CHIFA.

 B COMPLEX(N)
 the right hand side vector.

 On Return

 B the solution vector X .

 Error Condition

 A division by zero may occur if CHICO has set RCOND .EQ. 0.0
 or CHIFA has set INFO .NE. 0 .

 To compute INVERSE(A) * C where C is a matrix
 with P columns
 CALL CHIFA(A,LDA,N,KVPT,INFO)
 IF (INFO .NE. 0) GO TO ...
 DO 10 J = 1, p
 CALL CHISL(A,LDA,N,KVPT,C(1,J))
 10 CONTINUE

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CAXPY, CDOTC
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)

SLATEC2 (AAAAAA through D9UPAK) - 277

 891107 Modified routine equivalence list. (WRB)
 891107 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 278

CHKDER

 SUBROUTINE CHKDER (M, N, X, FVEC, FJAC, LDFJAC, XP, FVECP, MODE,
 + ERR)
 ***BEGIN PROLOGUE CHKDER
 ***PURPOSE Check the gradients of M nonlinear functions in N
 variables, evaluated at a point X, for consistency
 with the functions themselves.
 ***LIBRARY SLATEC
 ***CATEGORY F3, G4C
 ***TYPE SINGLE PRECISION (CHKDER-S, DCKDER-D)
 ***KEYWORDS GRADIENTS, JACOBIAN, MINPACK, NONLINEAR
 ***AUTHOR Hiebert, K. L. (SNLA)
 ***DESCRIPTION

 This subroutine is a companion routine to SNLS1,SNLS1E,SNSQ,and
 SNSQE which may be used to check the calculation of the Jacobian.

 SUBROUTINE CHKDER

 This subroutine checks the gradients of M nonlinear functions
 in N variables, evaluated at a point X, for consistency with
 the functions themselves. The user must call CKDER twice,
 first with MODE = 1 and then with MODE = 2.

 MODE = 1. On input, X must contain the point of evaluation.
 On output, XP is set to a neighboring point.

 MODE = 2. On input, FVEC must contain the functions and the
 rows of FJAC must contain the gradients
 of the respective functions each evaluated
 at X, and FVECP must contain the functions
 evaluated at XP.
 On output, ERR contains measures of correctness of
 the respective gradients.

 The subroutine does not perform reliably if cancellation or
 rounding errors cause a severe loss of significance in the
 evaluation of a function. Therefore, none of the components
 of X should be unusually small (in particular, zero) or any
 other value which may cause loss of significance.

 The SUBROUTINE statement is

 SUBROUTINE CHKDER(M,N,X,FVEC,FJAC,LDFJAC,XP,FVECP,MODE,ERR)

 where

 M is a positive integer input variable set to the number
 of functions.

 N is a positive integer input variable set to the number
 of variables.

 X is an input array of length N.

 FVEC is an array of length M. On input when MODE = 2,
 FVEC must contain the functions evaluated at X.

SLATEC2 (AAAAAA through D9UPAK) - 279

 FJAC is an M by N array. On input when MODE = 2,
 the rows of FJAC must contain the gradients of
 the respective functions evaluated at X.

 LDFJAC is a positive integer input parameter not less than M
 which specifies the leading dimension of the array FJAC.

 XP is an array of length N. On output when MODE = 1,
 XP is set to a neighboring point of X.

 FVECP is an array of length M. On input when MODE = 2,
 FVECP must contain the functions evaluated at XP.

 MODE is an integer input variable set to 1 on the first call
 and 2 on the second. Other values of MODE are equivalent
 to MODE = 1.

 ERR is an array of length M. On output when MODE = 2,
 ERR contains measures of correctness of the respective
 gradients. If there is no severe loss of significance,
 then if ERR(I) is 1.0 the I-th gradient is correct,
 while if ERR(I) is 0.0 the I-th gradient is incorrect.
 For values of ERR between 0.0 and 1.0, the categorization
 is less certain. In general, a value of ERR(I) greater
 than 0.5 indicates that the I-th gradient is probably
 correct, while a value of ERR(I) less than 0.5 indicates
 that the I-th gradient is probably incorrect.

 ***REFERENCES M. J. D. Powell, A hybrid method for nonlinear equa-
 tions. In Numerical Methods for Nonlinear Algebraic
 Equations, P. Rabinowitz, Editor. Gordon and Breach,
 1988.
 ***ROUTINES CALLED R1MACH
 ***REVISION HISTORY (YYMMDD)
 800301 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 280

CHPCO

 SUBROUTINE CHPCO (AP, N, KPVT, RCOND, Z)
 ***BEGIN PROLOGUE CHPCO
 ***PURPOSE Factor a complex Hermitian matrix stored in packed form by
 elimination with symmetric pivoting and estimate the
 condition number of the matrix.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2D1A
 ***TYPE COMPLEX (SSPCO-S, DSPCO-D, CHPCO-C, CSPCO-C)
 ***KEYWORDS CONDITION NUMBER, HERMITIAN, LINEAR ALGEBRA, LINPACK,
 MATRIX FACTORIZATION, PACKED
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 CHPCO factors a complex Hermitian matrix stored in packed
 form by elimination with symmetric pivoting and estimates
 the condition of the matrix.

 if RCOND is not needed, CHPFA is slightly faster.
 To solve A*X = B , follow CHPCO by CHPSL.
 To compute INVERSE(A)*C , follow CHPCO by CHPSL.
 To compute INVERSE(A) , follow CHPCO by CHPDI.
 To compute DETERMINANT(A) , follow CHPCO by CHPDI.
 To compute INERTIA(A), follow CHPCO by CHPDI.

 On Entry

 AP COMPLEX (N*(N+1)/2)
 the packed form of a Hermitian matrix A . The
 columns of the upper triangle are stored sequentially
 in a one-dimensional array of length N*(N+1)/2 .
 See comments below for details.

 N INTEGER
 the order of the matrix A .

 Output

 AP a block diagonal matrix and the multipliers which
 were used to obtain it stored in packed form.
 The factorization can be written A = U*D*CTRANS(U)
 where U is a product of permutation and unit
 upper triangular matrices , CTRANS(U) is the
 conjugate transpose of U , and D is block diagonal
 with 1 by 1 and 2 by 2 blocks.

 KVPT INTEGER(N)
 an integer vector of pivot indices.

 RCOND REAL
 an estimate of the reciprocal condition of A .
 For the system A*X = B , relative perturbations
 in A and B of size EPSILON may cause
 relative perturbations in X of size EPSILON/RCOND .
 If RCOND is so small that the logical expression
 1.0 + RCOND .EQ. 1.0
 is true, then A may be singular to working

SLATEC2 (AAAAAA through D9UPAK) - 281

 precision. In particular, RCOND is zero if
 exact singularity is detected or the estimate
 underflows.

 Z COMPLEX(N)
 a work vector whose contents are usually unimportant.
 If A is close to a singular matrix, then Z is
 an approximate null vector in the sense that
 NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .

 Packed Storage

 The following program segment will pack the upper
 triangle of a Hermitian matrix.

 K = 0
 DO 20 J = 1, N
 DO 10 I = 1, J
 K = K + 1
 AP(K) = A(I,J)
 10 CONTINUE
 20 CONTINUE

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CAXPY, CDOTC, CHPFA, CSSCAL, SCASUM
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 891107 Modified routine equivalence list. (WRB)
 891107 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 282

CHPDI

 SUBROUTINE CHPDI (AP, N, KPVT, DET, INERT, WORK, JOB)
 ***BEGIN PROLOGUE CHPDI
 ***PURPOSE Compute the determinant, inertia and inverse of a complex
 Hermitian matrix stored in packed form using the factors
 obtained from CHPFA.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2D1A, D3D1A
 ***TYPE COMPLEX (SSPDI-S, DSPDI-D, CHPDI-C, DSPDI-C)
 ***KEYWORDS DETERMINANT, HERMITIAN, INVERSE, LINEAR ALGEBRA, LINPACK,
 MATRIX, PACKED
 ***AUTHOR Bunch, J., (UCSD)
 ***DESCRIPTION

 CHPDI computes the determinant, inertia and inverse
 of a complex Hermitian matrix using the factors from CHPFA,
 where the matrix is stored in packed form.

 On Entry

 AP COMPLEX (N*(N+1)/2)
 the output from CHPFA.

 N INTEGER
 the order of the matrix A.

 KVPT INTEGER(N)
 the pivot vector from CHPFA.

 WORK COMPLEX(N)
 work vector. Contents ignored.

 JOB INTEGER
 JOB has the decimal expansion ABC where
 if C .NE. 0, the inverse is computed,
 if B .NE. 0, the determinant is computed,
 if A .NE. 0, the inertia is computed.

 For example, JOB = 111 gives all three.

 On Return

 Variables not requested by JOB are not used.

 AP contains the upper triangle of the inverse of
 the original matrix, stored in packed form.
 The columns of the upper triangle are stored
 sequentially in a one-dimensional array.

 DET REAL(2)
 determinant of original matrix.
 Determinant = DET(1) * 10.0**DET(2)
 with 1.0 .LE. ABS(DET(1)) .LT. 10.0
 or DET(1) = 0.0.

 INERT INTEGER(3)
 the inertia of the original matrix.

SLATEC2 (AAAAAA through D9UPAK) - 283

 INERT(1) = number of positive eigenvalues.
 INERT(2) = number of negative eigenvalues.
 INERT(3) = number of zero eigenvalues.

 Error Condition

 A division by zero will occur if the inverse is requested
 and CHPCO has set RCOND .EQ. 0.0
 or CHPFA has set INFO .NE. 0 .

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CAXPY, CCOPY, CDOTC, CSWAP
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 891107 Modified routine equivalence list. (WRB)
 891107 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 284

CHPFA

 SUBROUTINE CHPFA (AP, N, KPVT, INFO)
 ***BEGIN PROLOGUE CHPFA
 ***PURPOSE Factor a complex Hermitian matrix stored in packed form by
 elimination with symmetric pivoting.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2D1A
 ***TYPE COMPLEX (SSPFA-S, DSPFA-D, CHPFA-C, DSPFA-C)
 ***KEYWORDS HERMITIAN, LINEAR ALGEBRA, LINPACK, MATRIX FACTORIZATION,
 PACKED
 ***AUTHOR Bunch, J., (UCSD)
 ***DESCRIPTION

 CHPFA factors a complex Hermitian matrix stored in
 packed form by elimination with symmetric pivoting.

 To solve A*X = B , follow CHPFA by CHPSL.
 To compute INVERSE(A)*C , follow CHPFA by CHPSL.
 To compute DETERMINANT(A) , follow CHPFA by CHPDI.
 To compute INERTIA(A) , follow CHPFA by CHPDI.
 To compute INVERSE(A) , follow CHPFA by CHPDI.

 On Entry

 AP COMPLEX (N*(N+1)/2)
 the packed form of a Hermitian matrix A . The
 columns of the upper triangle are stored sequentially
 in a one-dimensional array of length N*(N+1)/2 .
 See comments below for details.

 N INTEGER
 the order of the matrix A .

 Output

 AP A block diagonal matrix and the multipliers which
 were used to obtain it stored in packed form.
 The factorization can be written A = U*D*CTRANS(U)
 where U is a product of permutation and unit
 upper triangular matrices , CTRANS(U) is the
 conjugate transpose of U , and D is block diagonal
 with 1 by 1 and 2 by 2 blocks.

 KVPT INTEGER(N)
 an integer vector of pivot indices.

 INFO INTEGER
 = 0 normal value.
 = K if the K-th pivot block is singular. This is
 not an error condition for this subroutine,
 but it does indicate that CHPSL or CHPDI may
 divide by zero if called.

 Packed Storage

 The following program segment will pack the upper
 triangle of a Hermitian matrix.

SLATEC2 (AAAAAA through D9UPAK) - 285

 K = 0
 DO 20 J = 1, N
 DO 10 I = 1, J
 K = K + 1
 AP(K) = A(I,J)
 10 CONTINUE
 20 CONTINUE

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CAXPY, CSWAP, ICAMAX
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 891107 Modified routine equivalence list. (WRB)
 891107 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 286

CHPMV

 SUBROUTINE CHPMV (UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY)
 ***BEGIN PROLOGUE CHPMV
 ***PURPOSE Perform the matrix-vector operation.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE COMPLEX (SHPMV-S, DHPMV-D, CHPMV-C)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 CHPMV performs the matrix-vector operation

 y := alpha*A*x + beta*y,

 where alpha and beta are scalars, x and y are n element vectors and
 A is an n by n hermitian matrix, supplied in packed form.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the upper or lower
 triangular part of the matrix A is supplied in the packed
 array AP as follows:

 UPLO = 'U' or 'u' The upper triangular part of A is
 supplied in AP.

 UPLO = 'L' or 'l' The lower triangular part of A is
 supplied in AP.

 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the order of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 ALPHA - COMPLEX .
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 AP - COMPLEX array of DIMENSION at least
 ((n*(n + 1))/2).
 Before entry with UPLO = 'U' or 'u', the array AP must
 contain the upper triangular part of the hermitian matrix
 packed sequentially, column by column, so that AP(1)
 contains a(1, 1), AP(2) and AP(3) contain a(1, 2)
 and a(2, 2) respectively, and so on.
 Before entry with UPLO = 'L' or 'l', the array AP must
 contain the lower triangular part of the hermitian matrix
 packed sequentially, column by column, so that AP(1)
 contains a(1, 1), AP(2) and AP(3) contain a(2, 1)

SLATEC2 (AAAAAA through D9UPAK) - 287

 and a(3, 1) respectively, and so on.
 Note that the imaginary parts of the diagonal elements need
 not be set and are assumed to be zero.
 Unchanged on exit.

 X - COMPLEX array of dimension at least
 (1 + (n - 1)*abs(INCX)).
 Before entry, the incremented array X must contain the n
 element vector x.
 Unchanged on exit.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

 BETA - COMPLEX .
 On entry, BETA specifies the scalar beta. When BETA is
 supplied as zero then Y need not be set on input.
 Unchanged on exit.

 Y - COMPLEX array of dimension at least
 (1 + (n - 1)*abs(INCY)).
 Before entry, the incremented array Y must contain the n
 element vector y. On exit, Y is overwritten by the updated
 vector y.

 INCY - INTEGER.
 On entry, INCY specifies the increment for the elements of
 Y. INCY must not be zero.
 Unchanged on exit.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 288

CHPR

 SUBROUTINE CHPR (UPLO, N, ALPHA, X, INCX, AP)
 ***BEGIN PROLOGUE CHPR
 ***PURPOSE Perform the hermitian rank 1 operation.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE COMPLEX (CHPR-C)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 CHPR performs the hermitian rank 1 operation

 A := alpha*x*conjg(x') + A,

 where alpha is a real scalar, x is an n element vector and A is an
 n by n hermitian matrix, supplied in packed form.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the upper or lower
 triangular part of the matrix A is supplied in the packed
 array AP as follows:

 UPLO = 'U' or 'u' The upper triangular part of A is
 supplied in AP.

 UPLO = 'L' or 'l' The lower triangular part of A is
 supplied in AP.

 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the order of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 ALPHA - REAL .
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 X - COMPLEX array of dimension at least
 (1 + (n - 1)*abs(INCX)).
 Before entry, the incremented array X must contain the n
 element vector x.
 Unchanged on exit.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

SLATEC2 (AAAAAA through D9UPAK) - 289

 AP - COMPLEX array of DIMENSION at least
 ((n*(n + 1))/2).
 Before entry with UPLO = 'U' or 'u', the array AP must
 contain the upper triangular part of the hermitian matrix
 packed sequentially, column by column, so that AP(1)
 contains a(1, 1), AP(2) and AP(3) contain a(1, 2)
 and a(2, 2) respectively, and so on. On exit, the array
 AP is overwritten by the upper triangular part of the
 updated matrix.
 Before entry with UPLO = 'L' or 'l', the array AP must
 contain the lower triangular part of the hermitian matrix
 packed sequentially, column by column, so that AP(1)
 contains a(1, 1), AP(2) and AP(3) contain a(2, 1)
 and a(3, 1) respectively, and so on. On exit, the array
 AP is overwritten by the lower triangular part of the
 updated matrix.
 Note that the imaginary parts of the diagonal elements need
 not be set, they are assumed to be zero, and on exit they
 are set to zero.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 290

CHPR2

 SUBROUTINE CHPR2 (UPLO, N, ALPHA, X, INCX, Y, INCY, AP)
 ***BEGIN PROLOGUE CHPR2
 ***PURPOSE Perform the hermitian rank 2 operation.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE COMPLEX (SHPR2-S, DHPR2-D, CHPR2-C)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 CHPR2 performs the hermitian rank 2 operation

 A := alpha*x*conjg(y') + conjg(alpha)*y*conjg(x') + A,

 where alpha is a scalar, x and y are n element vectors and A is an
 n by n hermitian matrix, supplied in packed form.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the upper or lower
 triangular part of the matrix A is supplied in the packed
 array AP as follows:

 UPLO = 'U' or 'u' The upper triangular part of A is
 supplied in AP.

 UPLO = 'L' or 'l' The lower triangular part of A is
 supplied in AP.

 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the order of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 ALPHA - COMPLEX .
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 X - COMPLEX array of dimension at least
 (1 + (n - 1)*abs(INCX)).
 Before entry, the incremented array X must contain the n
 element vector x.
 Unchanged on exit.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

SLATEC2 (AAAAAA through D9UPAK) - 291

 Y - COMPLEX array of dimension at least
 (1 + (n - 1)*abs(INCY)).
 Before entry, the incremented array Y must contain the n
 element vector y.
 Unchanged on exit.

 INCY - INTEGER.
 On entry, INCY specifies the increment for the elements of
 Y. INCY must not be zero.
 Unchanged on exit.

 AP - COMPLEX array of DIMENSION at least
 ((n*(n + 1))/2).
 Before entry with UPLO = 'U' or 'u', the array AP must
 contain the upper triangular part of the hermitian matrix
 packed sequentially, column by column, so that AP(1)
 contains a(1, 1), AP(2) and AP(3) contain a(1, 2)
 and a(2, 2) respectively, and so on. On exit, the array
 AP is overwritten by the upper triangular part of the
 updated matrix.
 Before entry with UPLO = 'L' or 'l', the array AP must
 contain the lower triangular part of the hermitian matrix
 packed sequentially, column by column, so that AP(1)
 contains a(1, 1), AP(2) and AP(3) contain a(2, 1)
 and a(3, 1) respectively, and so on. On exit, the array
 AP is overwritten by the lower triangular part of the
 updated matrix.
 Note that the imaginary parts of the diagonal elements need
 not be set, they are assumed to be zero, and on exit they
 are set to zero.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 292

CHPSL

 SUBROUTINE CHPSL (AP, N, KPVT, B)
 ***BEGIN PROLOGUE CHPSL
 ***PURPOSE Solve a complex Hermitian system using factors obtained
 from CHPFA.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2D1A
 ***TYPE COMPLEX (SSPSL-S, DSPSL-D, CHPSL-C, CSPSL-C)
 ***KEYWORDS HERMITIAN, LINEAR ALGEBRA, LINPACK, MATRIX, PACKED, SOLVE
 ***AUTHOR Bunch, J., (UCSD)
 ***DESCRIPTION

 CHISL solves the complex Hermitian system
 A * X = B
 using the factors computed by CHPFA.

 On Entry

 AP COMPLEX(N*(N+1)/2)
 the output from CHPFA.

 N INTEGER
 the order of the matrix A .

 KVPT INTEGER(N)
 the pivot vector from CHPFA.

 B COMPLEX(N)
 the right hand side vector.

 On Return

 B the solution vector X .

 Error Condition

 A division by zero may occur if CHPCO has set RCOND .EQ. 0.0
 or CHPFA has set INFO .NE. 0 .

 To compute INVERSE(A) * C where C is a matrix
 with P columns
 CALL CHPFA(AP,N,KVPT,INFO)
 IF (INFO .NE. 0) GO TO ...
 DO 10 J = 1, P
 CALL CHPSL(AP,N,KVPT,C(1,J))
 10 CONTINUE

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CAXPY, CDOTC
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 891107 Modified routine equivalence list. (WRB)
 891107 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)

SLATEC2 (AAAAAA through D9UPAK) - 293

 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 294

CHU

 FUNCTION CHU (A, B, X)
 ***BEGIN PROLOGUE CHU
 ***PURPOSE Compute the logarithmic confluent hypergeometric function.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C11
 ***TYPE SINGLE PRECISION (CHU-S, DCHU-D)
 ***KEYWORDS FNLIB, LOGARITHMIC CONFLUENT HYPERGEOMETRIC FUNCTION,
 SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 CHU computes the logarithmic confluent hypergeometric function,
 U(A,B,X).

 Input Parameters:
 A real
 B real
 X real and positive

 This routine is not valid when 1+A-B is close to zero if X is small.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED EXPREL, GAMMA, GAMR, POCH, POCH1, R1MACH, R9CHU,
 XERMSG
 ***REVISION HISTORY (YYMMDD)
 770801 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900727 Added EXTERNAL statement. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 295

CINVIT

 SUBROUTINE CINVIT (NM, N, AR, AI, WR, WI, SELECT, MM, M, ZR, ZI,
 + IERR, RM1, RM2, RV1, RV2)
 ***BEGIN PROLOGUE CINVIT
 ***PURPOSE Compute the eigenvectors of a complex upper Hessenberg
 associated with specified eigenvalues using inverse
 iteration.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4C2B
 ***TYPE COMPLEX (INVIT-S, CINVIT-C)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of the ALGOL procedure CXINVIT
 by Peters and Wilkinson.
 HANDBOOK FOR AUTO. COMP. VOL.II-LINEAR ALGEBRA, 418-439(1971).

 This subroutine finds those eigenvectors of A COMPLEX UPPER
 Hessenberg matrix corresponding to specified eigenvalues,
 using inverse iteration.

 On INPUT

 NM must be set to the row dimension of the two-dimensional
 array parameters, AR, AI, ZR and ZI, as declared in the
 calling program dimension statement. NM is an INTEGER
 variable.

 N is the order of the matrix A=(AR,AI). N is an INTEGER
 variable. N must be less than or equal to NM.

 AR and AI contain the real and imaginary parts, respectively,
 of the complex upper Hessenberg matrix. AR and AI are
 two-dimensional REAL arrays, dimensioned AR(NM,N)
 and AI(NM,N).

 WR and WI contain the real and imaginary parts, respectively,
 of the eigenvalues of the matrix. The eigenvalues must be
 stored in a manner identical to that of subroutine COMLR,
 which recognizes possible splitting of the matrix. WR and
 WI are one-dimensional REAL arrays, dimensioned WR(N) and
 WI(N).

 SELECT specifies the eigenvectors to be found. The
 eigenvector corresponding to the J-th eigenvalue is
 specified by setting SELECT(J) to .TRUE. SELECT is a
 one-dimensional LOGICAL array, dimensioned SELECT(N).

 MM should be set to an upper bound for the number of
 eigenvectors to be found. MM is an INTEGER variable.

 On OUTPUT

 AR, AI, WI, and SELECT are unaltered.

 WR may have been altered since close eigenvalues are perturbed

SLATEC2 (AAAAAA through D9UPAK) - 296

 slightly in searching for independent eigenvectors.

 M is the number of eigenvectors actually found. M is an
 INTEGER variable.

 ZR and ZI contain the real and imaginary parts, respectively,
 of the eigenvectors corresponding to the flagged eigenvalues.
 The eigenvectors are normalized so that the component of
 largest magnitude is 1. Any vector which fails the
 acceptance test is set to zero. ZR and ZI are
 two-dimensional REAL arrays, dimensioned ZR(NM,MM) and
 ZI(NM,MM).

 IERR is an INTEGER flag set to
 Zero for normal return,
 -(2*N+1) if more than MM eigenvectors have been requested
 (the MM eigenvectors calculated to this point are
 in ZR and ZI),
 -K if the iteration corresponding to the K-th
 value fails (if this occurs more than once, K
 is the index of the last occurrence); the
 corresponding columns of ZR and ZI are set to
 zero vectors,
 -(N+K) if both error situations occur.

 RV1 and RV2 are one-dimensional REAL arrays used for
 temporary storage, dimensioned RV1(N) and RV2(N).
 They hold the approximate eigenvectors during the inverse
 iteration process.

 RM1 and RM2 are two-dimensional REAL arrays used for
 temporary storage, dimensioned RM1(N,N) and RM2(N,N).
 These arrays hold the triangularized form of the upper
 Hessenberg matrix used in the inverse iteration process.

 The ALGOL procedure GUESSVEC appears in CINVIT in-line.

 Calls PYTHAG(A,B) for sqrt(A**2 + B**2).
 Calls CDIV for complex division.

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED CDIV, PYTHAG
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 297

CLBETA

 COMPLEX FUNCTION CLBETA (A, B)
 ***BEGIN PROLOGUE CLBETA
 ***PURPOSE Compute the natural logarithm of the complete Beta
 function.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C7B
 ***TYPE COMPLEX (ALBETA-S, DLBETA-D, CLBETA-C)
 ***KEYWORDS FNLIB, LOGARITHM OF THE COMPLETE BETA FUNCTION,
 SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 CLBETA computes the natural log of the complex valued complete beta
 function of complex parameters A and B. This is a preliminary version
 which is not accurate.

 Input Parameters:
 A complex and the real part of A positive
 B complex and the real part of B positive

 ***REFERENCES (NONE)
 ***ROUTINES CALLED CLNGAM, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770701 DATE WRITTEN
 861211 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 298

CLNGAM

 COMPLEX FUNCTION CLNGAM (ZIN)
 ***BEGIN PROLOGUE CLNGAM
 ***PURPOSE Compute the logarithm of the absolute value of the Gamma
 function.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C7A
 ***TYPE COMPLEX (ALNGAM-S, DLNGAM-D, CLNGAM-C)
 ***KEYWORDS ABSOLUTE VALUE, COMPLETE GAMMA FUNCTION, FNLIB, LOGARITHM,
 SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 CLNGAM computes the natural log of the complex valued gamma function
 at ZIN, where ZIN is a complex number. This is a preliminary version,
 which is not accurate.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED C9LGMC, CARG, CLNREL, R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 780401 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 299

CLNREL

 COMPLEX FUNCTION CLNREL (Z)
 ***BEGIN PROLOGUE CLNREL
 ***PURPOSE Evaluate ln(1+X) accurate in the sense of relative error.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C4B
 ***TYPE COMPLEX (ALNREL-S, DLNREL-D, CLNREL-C)
 ***KEYWORDS ELEMENTARY FUNCTIONS, FNLIB, LOGARITHM
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 CLNREL(Z) = LOG(1+Z) with relative error accuracy near Z = 0.
 Let RHO = ABS(Z) and
 R**2 = ABS(1+Z)**2 = (1+X)**2 + Y**2 = 1 + 2*X + RHO**2 .
 Now if RHO is small we may evaluate CLNREL(Z) accurately by
 LOG(1+Z) = CMPLX (LOG(R), CARG(1+Z))
 = CMPLX (0.5*LOG(R**2), CARG(1+Z))
 = CMPLX (0.5*ALNREL(2*X+RHO**2), CARG(1+Z))

 ***REFERENCES (NONE)
 ***ROUTINES CALLED ALNREL, CARG, R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770401 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 300

CLOG10

 COMPLEX FUNCTION CLOG10 (Z)
 ***BEGIN PROLOGUE CLOG10
 ***PURPOSE Compute the principal value of the complex base 10
 logarithm.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C4B
 ***TYPE COMPLEX (CLOG10-C)
 ***KEYWORDS BASE TEN LOGARITHM, ELEMENTARY FUNCTIONS, FNLIB
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 CLOG10(Z) calculates the principal value of the complex common
 or base 10 logarithm of Z for -PI .LT. arg(Z) .LE. +PI.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 770401 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 301

CMGNBN

 SUBROUTINE CMGNBN (NPEROD, N, MPEROD, M, A, B, C, IDIMY, Y,
 + IERROR, W)
 ***BEGIN PROLOGUE CMGNBN
 ***PURPOSE Solve a complex block tridiagonal linear system of
 equations by a cyclic reduction algorithm.
 ***LIBRARY SLATEC (FISHPACK)
 ***CATEGORY I2B4B
 ***TYPE COMPLEX (GENBUN-S, CMGNBN-C)
 ***KEYWORDS CYCLIC REDUCTION, ELLIPTIC PDE, FISHPACK,
 TRIDIAGONAL LINEAR SYSTEM
 ***AUTHOR Adams, J., (NCAR)
 Swarztrauber, P. N., (NCAR)
 Sweet, R., (NCAR)
 ***DESCRIPTION

 Subroutine CMGNBN solves the complex linear system of equations

 A(I)*X(I-1,J) + B(I)*X(I,J) + C(I)*X(I+1,J)

 + X(I,J-1) - 2.*X(I,J) + X(I,J+1) = Y(I,J)

 For I = 1,2,...,M and J = 1,2,...,N.

 The indices I+1 and I-1 are evaluated modulo M, i.e.,
 X(0,J) = X(M,J) and X(M+1,J) = X(1,J), and X(I,0) may be equal to
 0, X(I,2), or X(I,N) and X(I,N+1) may be equal to 0, X(I,N-1), or
 X(I,1) depending on an input parameter.

 * * * * * * * * Parameter Description * * * * * * * * * *

 * * * * * * On Input * * * * * *

 NPEROD
 Indicates the values that X(I,0) and X(I,N+1) are assumed to
 have.

 = 0 If X(I,0) = X(I,N) and X(I,N+1) = X(I,1).
 = 1 If X(I,0) = X(I,N+1) = 0 .
 = 2 If X(I,0) = 0 and X(I,N+1) = X(I,N-1).
 = 3 If X(I,0) = X(I,2) and X(I,N+1) = X(I,N-1).
 = 4 If X(I,0) = X(I,2) and X(I,N+1) = 0.

 N
 The number of unknowns in the J-direction. N must be greater
 than 2.

 MPEROD
 = 0 If A(1) and C(M) are not zero
 = 1 If A(1) = C(M) = 0

 M
 The number of unknowns in the I-direction. N must be greater
 than 2.

 A,B,C

SLATEC2 (AAAAAA through D9UPAK) - 302

 One-dimensional complex arrays of length M that specify the
 coefficients in the linear equations given above. If MPEROD = 0
 the array elements must not depend upon the index I, but must be
 constant. Specifically, the subroutine checks the following
 condition

 A(I) = C(1)
 C(I) = C(1)
 B(I) = B(1)

 For I=1,2,...,M.

 IDIMY
 The row (or first) dimension of the two-dimensional array Y as
 it appears in the program calling CMGNBN. This parameter is
 used to specify the variable dimension of Y. IDIMY must be at
 least M.

 Y
 A two-dimensional complex array that specifies the values of the
 right side of the linear system of equations given above. Y
 must be dimensioned at least M*N.

 W
 A one-dimensional complex array that must be provided by the
 user for work space. W may require up to 4*N +
 (10 + INT(log2(N)))*M LOCATIONS. The actual number of locations
 used is computed by CMGNBN and is returned in location W(1).

 * * * * * * On Output * * * * * *

 Y
 Contains the solution X.

 IERROR
 An error flag which indicates invalid input parameters. Except
 for number zero, a solution is not attempted.

 = 0 No error.
 = 1 M .LE. 2
 = 2 N .LE. 2
 = 3 IDIMY .LT. M
 = 4 NPEROD .LT. 0 or NPEROD .GT. 4
 = 5 MPEROD .LT. 0 or MPEROD .GT. 1
 = 6 A(I) .NE. C(1) or C(I) .NE. C(1) or B(I) .NE. B(1) for
 some I=1,2,...,M.
 = 7 A(1) .NE. 0 or C(M) .NE. 0 and MPEROD = 1

 W
 W(1) contains the required length of W.

 *Long Description:

 * * * * * * * Program Specifications * * * * * * * * * * * *

 Dimension of A(M),B(M),C(M),Y(IDIMY,N),W(see parameter list)
 Arguments

 Latest June 1979

SLATEC2 (AAAAAA through D9UPAK) - 303

 Revision

 Subprograms CMGNBN,CMPOSD,CMPOSN,CMPOSP,CMPCSG,CMPMRG,
 Required CMPTRX,CMPTR3,PIMACH

 Special None
 Conditions

 Common None
 Blocks

 I/O None

 Precision Single

 Specialist Roland Sweet

 Language FORTRAN

 History Written by Roland Sweet at NCAR in June, 1977

 Algorithm The linear system is solved by a cyclic reduction
 algorithm described in the reference.

 Space 4944(DECIMAL) = 11520(octal) locations on the NCAR
 Required Control Data 7600

 Timing and The execution time T on the NCAR Control Data
 Accuracy 7600 for subroutine CMGNBN is roughly proportional
 to M*N*log2(N), but also depends on the input
 parameter NPEROD. Some typical values are listed
 in the table below.
 To measure the accuracy of the algorithm a
 uniform random number generator was used to create
 a solution array X for the system given in the
 'PURPOSE' with

 A(I) = C(I) = -0.5*B(I) = 1, I=1,2,...,M

 and, when MPEROD = 1

 A(1) = C(M) = 0
 A(M) = C(1) = 2.

 The solution X was substituted into the given sys-
 tem and a right side Y was computed. Using this
 array Y subroutine CMGNBN was called to produce an
 approximate solution Z. Then the relative error,
 defined as

 E = MAX(ABS(Z(I,J)-X(I,J)))/MAX(ABS(X(I,J)))

 where the two maxima are taken over all I=1,2,...,M
 and J=1,2,...,N, was computed. The value of E is
 given in the table below for some typical values of
 M and N.

 M (=N) MPEROD NPEROD T(MSECS) E
 ------ ------ ------ -------- ------

SLATEC2 (AAAAAA through D9UPAK) - 304

 31 0 0 77 1.E-12
 31 1 1 45 4.E-13
 31 1 3 91 2.E-12
 32 0 0 59 7.E-14
 32 1 1 65 5.E-13
 32 1 3 97 2.E-13
 33 0 0 80 6.E-13
 33 1 1 67 5.E-13
 33 1 3 76 3.E-12
 63 0 0 350 5.E-12
 63 1 1 215 6.E-13
 63 1 3 412 1.E-11
 64 0 0 264 1.E-13
 64 1 1 287 3.E-12
 64 1 3 421 3.E-13
 65 0 0 338 2.E-12
 65 1 1 292 5.E-13
 65 1 3 329 1.E-11

 Portability American National Standards Institute Fortran.
 The machine dependent constant PI is defined in
 function PIMACH.

 Required COS
 Resident
 Routines

 Reference Sweet, R., 'A Cyclic Reduction Algorithm for
 Solving Block Tridiagonal Systems Of Arbitrary
 Dimensions,' SIAM J. on Numer. Anal.,
 14(SEPT., 1977), PP. 706-720.

 *

 ***REFERENCES R. Sweet, A cyclic reduction algorithm for solving
 block tridiagonal systems of arbitrary dimensions,
 SIAM Journal on Numerical Analysis 14, (September
 1977), pp. 706-720.
 ***ROUTINES CALLED CMPOSD, CMPOSN, CMPOSP
 ***REVISION HISTORY (YYMMDD)
 801001 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 305

CNBCO

 SUBROUTINE CNBCO (ABE, LDA, N, ML, MU, IPVT, RCOND, Z)
 ***BEGIN PROLOGUE CNBCO
 ***PURPOSE Factor a band matrix using Gaussian elimination and
 estimate the condition number.
 ***LIBRARY SLATEC
 ***CATEGORY D2C2
 ***TYPE COMPLEX (SNBCO-S, DNBCO-D, CNBCO-C)
 ***KEYWORDS BANDED, LINEAR EQUATIONS, MATRIX FACTORIZATION,
 NONSYMMETRIC
 ***AUTHOR Voorhees, E. A., (LANL)
 ***DESCRIPTION

 CNBCO factors a complex band matrix by Gaussian
 elimination and estimates the condition of the matrix.

 If RCOND is not needed, CNBFA is slightly faster.
 To solve A*X = B , follow CNBCO by CNBSL.
 To compute INVERSE(A)*C , follow CNBCO by CNBSL.
 To compute DETERMINANT(A) , follow CNBCO by CNBDI.

 On Entry

 ABE COMPLEX(LDA, NC)
 contains the matrix in band storage. The rows
 of the original matrix are stored in the rows
 of ABE and the diagonals of the original matrix
 are stored in columns 1 through ML+MU+1 of ABE.
 NC must be .GE. 2*ML+MU+1 .
 See the comments below for details.

 LDA INTEGER
 the leading dimension of the array ABE.
 LDA must be .GE. N .

 N INTEGER
 the order of the original matrix.

 ML INTEGER
 number of diagonals below the main diagonal.
 0 .LE. ML .LT. N .

 MU INTEGER
 number of diagonals above the main diagonal.
 0 .LE. MU .LT. N .
 More efficient if ML .LE. MU .

 On Return

 ABE an upper triangular matrix in band storage
 and the multipliers which were used to obtain it.
 The factorization can be written A = L*U where
 L is a product of permutation and unit lower
 triangular matrices and U is upper triangular.

 IPVT INTEGER(N)
 an integer vector of pivot indices.

SLATEC2 (AAAAAA through D9UPAK) - 306

 RCOND REAL
 an estimate of the reciprocal condition of A .
 For the system A*X = B , relative perturbations
 in A and B of size EPSILON may cause
 relative perturbations in X of size EPSILON/RCOND .
 If RCOND is so small that the logical expression
 1.0 + RCOND .EQ. 1.0
 is true, then A may be singular to working
 precision. In particular, RCOND is zero if
 exact singularity is detected or the estimate
 underflows.

 Z COMPLEX(N)
 a work vector whose contents are usually unimportant.
 If A is close to a singular matrix, then Z is
 an approximate null vector in the sense that
 NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .

 Band Storage

 If A is a band matrix, the following program segment
 will set up the input.

 ML = (band width below the diagonal)
 MU = (band width above the diagonal)
 DO 20 I = 1, N
 J1 = MAX(1, I-ML)
 J2 = MIN(N, I+MU)
 DO 10 J = J1, J2
 K = J - I + ML + 1
 ABE(I,K) = A(I,J)
 10 CONTINUE
 20 CONTINUE

 This uses columns 1 through ML+MU+1 of ABE .
 Furthermore, ML additional columns are needed in
 ABE starting with column ML+MU+2 for elements
 generated during the triangularization. The total
 number of columns needed in ABE is 2*ML+MU+1 .

 Example: If the original matrix is

 11 12 13 0 0 0
 21 22 23 24 0 0
 0 32 33 34 35 0
 0 0 43 44 45 46
 0 0 0 54 55 56
 0 0 0 0 65 66

 then N = 6, ML = 1, MU = 2, LDA .GE. 5 and ABE should contain

 * 11 12 13 + , * = not used
 21 22 23 24 + , + = used for pivoting
 32 33 34 35 +
 43 44 45 46 +
 54 55 56 * +
 65 66 * * +

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.

SLATEC2 (AAAAAA through D9UPAK) - 307

 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CAXPY, CDOTC, CNBFA, CSSCAL, SCASUM
 ***REVISION HISTORY (YYMMDD)
 800730 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 308

CNBDI

 SUBROUTINE CNBDI (ABE, LDA, N, ML, MU, IPVT, DET)
 ***BEGIN PROLOGUE CNBDI
 ***PURPOSE Compute the determinant of a band matrix using the factors
 computed by CNBCO or CNBFA.
 ***LIBRARY SLATEC
 ***CATEGORY D3C2
 ***TYPE COMPLEX (SNBDI-S, DNBDI-D, CNBDI-C)
 ***KEYWORDS BANDED, DETERMINANT, LINEAR EQUATIONS, NONSYMMETRIC
 ***AUTHOR Voorhees, E. A., (LANL)
 ***DESCRIPTION

 CNBDI computes the determinant of a band matrix
 using the factors computed by CNBCO or CNBFA.
 If the inverse is needed, use CNBSL N times.

 On Entry

 ABE COMPLEX(LDA, NC)
 the output from CNBCO or CNBFA.
 NC must be .GE. 2*ML+MU+1 .

 LDA INTEGER
 the leading dimension of the array ABE .

 N INTEGER
 the order of the original matrix.

 ML INTEGER
 number of diagonals below the main diagonal.

 MU INTEGER
 number of diagonals above the main diagonal.

 IPVT INTEGER(N)
 the pivot vector from CNBCO or CNBFA.

 On Return

 DET COMPLEX(2)
 determinant of original matrix.
 Determinant = DET(1) * 10.0**DET(2)
 with 1.0 .LE. CABS1(DET(1)) .LT. 10.0
 or DET(1) = 0.0 .

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 800730 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 309

CNBFA

 SUBROUTINE CNBFA (ABE, LDA, N, ML, MU, IPVT, INFO)
 ***BEGIN PROLOGUE CNBFA
 ***PURPOSE Factor a band matrix by elimination.
 ***LIBRARY SLATEC
 ***CATEGORY D2C2
 ***TYPE COMPLEX (SNBFA-S, DNBFA-D, CNBFA-C)
 ***KEYWORDS BANDED, LINEAR EQUATIONS, MATRIX FACTORIZATION,
 NONSYMMETRIC
 ***AUTHOR Voorhees, E. A., (LANL)
 ***DESCRIPTION

 CNBFA factors a complex band matrix by elimination.

 CNBFA is usually called by CNBCO, but it can be called
 directly with a saving in time if RCOND is not needed.

 On Entry

 ABE COMPLEX(LDA, NC)
 contains the matrix in band storage. The rows
 of the original matrix are stored in the rows
 of ABE and the diagonals of the original matrix
 are stored in columns 1 through ML+MU+1 of ABE.
 NC must be .GE. 2*ML+MU+1 .
 See the comments below for details.

 LDA INTEGER
 the leading dimension of the array ABE.
 LDA must be .GE. N .

 N INTEGER
 the order of the original matrix.

 ML INTEGER
 number of diagonals below the main diagonal.
 0 .LE. ML .LT. N .

 MU INTEGER
 number of diagonals above the main diagonal.
 0 .LE. MU .LT. N .
 More efficient if ML .LE. MU .

 On Return

 ABE an upper triangular matrix in band storage
 and the multipliers which were used to obtain it.
 the factorization can be written A = L*U where
 L is a product of permutation and unit lower
 triangular matrices and U is upper triangular.

 IPVT INTEGER(N)
 an integer vector of pivot indices.

 INFO INTEGER
 =0 normal value
 =K if U(K,K) .EQ. 0.0 . This is not an error

SLATEC2 (AAAAAA through D9UPAK) - 310

 condition for this subroutine, but it does
 indicate that CNBSL will divide by zero if
 called. Use RCOND in CNBCO for a reliable
 indication of singularity.

 Band Storage

 If A is a band matrix, the following program segment
 will set up the input.

 ML = (band width below the diagonal)
 MU = (band width above the diagonal)
 DO 20 I = 1, N
 J1 = MAX(1, I-ML)
 J2 = MIN(N, I+MU)
 DO 10 J = J1, J2
 K = J - I + ML + 1
 ABE(I,K) = A(I,J)
 10 CONTINUE
 20 CONTINUE

 This uses columns 1 through ML+MU+1 of ABE .
 Furthermore, ML additional columns are needed in
 ABE starting with column ML+MU+2 for elements
 generated during the triangularization. The total
 number of columns needed in ABE is 2*ML+MU+1 .

 Example: If the original matrix is

 11 12 13 0 0 0
 21 22 23 24 0 0
 0 32 33 34 35 0
 0 0 43 44 45 46
 0 0 0 54 55 56
 0 0 0 0 65 66

 then N = 6, ML = 1, MU = 2, LDA .GE. 5 and ABE should contain

 * 11 12 13 + , * = not used
 21 22 23 24 + , + = used for pivoting
 32 33 34 35 +
 43 44 45 46 +
 54 55 56 * +
 65 66 * * +

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CAXPY, CSCAL, CSWAP, ICAMAX
 ***REVISION HISTORY (YYMMDD)
 800730 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 311

CNBFS

 SUBROUTINE CNBFS (ABE, LDA, N, ML, MU, V, ITASK, IND, WORK, IWORK)
 ***BEGIN PROLOGUE CNBFS
 ***PURPOSE Solve a general nonsymmetric banded system of linear
 equations.
 ***LIBRARY SLATEC
 ***CATEGORY D2C2
 ***TYPE COMPLEX (SNBFS-S, DNBFS-D, CNBFS-C)
 ***KEYWORDS BANDED, LINEAR EQUATIONS, NONSYMMETRIC
 ***AUTHOR Voorhees, E. A., (LANL)
 ***DESCRIPTION

 Subroutine CNBFS solves a general nonsymmetric banded NxN
 system of single precision complex linear equations using
 SLATEC subroutines CNBCO and CNBSL. These are adaptations
 of the LINPACK subroutines CGBCO and CGBSL which require
 a different format for storing the matrix elements. If
 A is an NxN complex matrix and if X and B are complex
 N-vectors, then CNBFS solves the equation

 A*X=B.

 A band matrix is a matrix whose nonzero elements are all
 fairly near the main diagonal, specifically A(I,J) = 0
 if I-J is greater than ML or J-I is greater than
 MU . The integers ML and MU are called the lower and upper
 band widths and M = ML+MU+1 is the total band width.
 CNBFS uses less time and storage than the corresponding
 program for general matrices (CGEFS) if 2*ML+MU .LT. N .

 The matrix A is first factored into upper and lower tri-
 angular matrices U and L using partial pivoting. These
 factors and the pivoting information are used to find the
 solution vector X. An approximate condition number is
 calculated to provide a rough estimate of the number of
 digits of accuracy in the computed solution.

 If the equation A*X=B is to be solved for more than one vector
 B, the factoring of A does not need to be performed again and
 the option to only solve (ITASK .GT. 1) will be faster for
 the succeeding solutions. In this case, the contents of A,
 LDA, N and IWORK must not have been altered by the user follow-
 ing factorization (ITASK=1). IND will not be changed by CNBFS
 in this case.

 Band Storage

 If A is a band matrix, the following program segment
 will set up the input.

 ML = (band width below the diagonal)
 MU = (band width above the diagonal)
 DO 20 I = 1, N
 J1 = MAX(1, I-ML)
 J2 = MIN(N, I+MU)
 DO 10 J = J1, J2

SLATEC2 (AAAAAA through D9UPAK) - 312

 K = J - I + ML + 1
 ABE(I,K) = A(I,J)
 10 CONTINUE
 20 CONTINUE

 This uses columns 1 through ML+MU+1 of ABE .
 Furthermore, ML additional columns are needed in
 ABE starting with column ML+MU+2 for elements
 generated during the triangularization. The total
 number of columns needed in ABE is 2*ML+MU+1 .

 Example: If the original matrix is

 11 12 13 0 0 0
 21 22 23 24 0 0
 0 32 33 34 35 0
 0 0 43 44 45 46
 0 0 0 54 55 56
 0 0 0 0 65 66

 then N = 6, ML = 1, MU = 2, LDA .GE. 5 and ABE should contain

 * 11 12 13 + , * = not used
 21 22 23 24 + , + = used for pivoting
 32 33 34 35 +
 43 44 45 46 +
 54 55 56 * +
 65 66 * * +

 Argument Description ***

 ABE COMPLEX(LDA,NC)
 on entry, contains the matrix in band storage as
 described above. NC must not be less than
 2*ML+MU+1 . The user is cautioned to specify NC
 with care since it is not an argument and cannot
 be checked by CNBFS. The rows of the original
 matrix are stored in the rows of ABE and the
 diagonals of the original matrix are stored in
 columns 1 through ML+MU+1 of ABE .
 on return, contains an upper triangular matrix U and
 the multipliers necessary to construct a matrix L
 so that A=L*U.
 LDA INTEGER
 the leading dimension of array ABE. LDA must be great-
 er than or equal to N. (terminal error message IND=-1)
 N INTEGER
 the order of the matrix A. N must be greater
 than or equal to 1 . (terminal error message IND=-2)
 ML INTEGER
 the number of diagonals below the main diagonal.
 ML must not be less than zero nor greater than or
 equal to N . (terminal error message IND=-5)
 MU INTEGER
 the number of diagonals above the main diagonal.
 MU must not be less than zero nor greater than or
 equal to N . (terminal error message IND=-6)
 V COMPLEX(N)
 on entry, the singly subscripted array(vector) of di-

SLATEC2 (AAAAAA through D9UPAK) - 313

 mension N which contains the right hand side B of a
 system of simultaneous linear equations A*X=B.
 on return, V contains the solution vector, X .
 ITASK INTEGER
 if ITASK = 1, the matrix A is factored and then the
 linear equation is solved.
 if ITASK .GT. 1, the equation is solved using the existing
 factored matrix A and IWORK.
 if ITASK .LT. 1, then terminal error message IND=-3 is
 printed.
 IND INTEGER
 GT. 0 IND is a rough estimate of the number of digits
 of accuracy in the solution, X.
 LT. 0 see error message corresponding to IND below.
 WORK COMPLEX(N)
 a singly subscripted array of dimension at least N.
 IWORK INTEGER(N)
 a singly subscripted array of dimension at least N.

 Error Messages Printed ***

 IND=-1 terminal N is greater than LDA.
 IND=-2 terminal N is less than 1.
 IND=-3 terminal ITASK is less than 1.
 IND=-4 terminal The matrix A is computationally singular.
 A solution has not been computed.
 IND=-5 terminal ML is less than zero or is greater than
 or equal to N .
 IND=-6 terminal MU is less than zero or is greater than
 or equal to N .
 IND=-10 warning The solution has no apparent significance.
 The solution may be inaccurate or the matrix
 A may be poorly scaled.

 NOTE- The above terminal(*fatal*) error messages are
 designed to be handled by XERMSG in which
 LEVEL=1 (recoverable) and IFLAG=2 . LEVEL=0
 for warning error messages from XERMSG. Unless
 the user provides otherwise, an error message
 will be printed followed by an abort.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CNBCO, CNBSL, R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800813 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900510 Convert XERRWV calls to XERMSG calls, cvt GOTO's to
 IF-THEN-ELSE. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 314

CNBIR

 SUBROUTINE CNBIR (ABE, LDA, N, ML, MU, V, ITASK, IND, WORK, IWORK)
 ***BEGIN PROLOGUE CNBIR
 ***PURPOSE Solve a general nonsymmetric banded system of linear
 equations. Iterative refinement is used to obtain an error
 estimate.
 ***LIBRARY SLATEC
 ***CATEGORY D2C2
 ***TYPE COMPLEX (SNBIR-S, CNBIR-C)
 ***KEYWORDS BANDED, LINEAR EQUATIONS, NONSYMMETRIC
 ***AUTHOR Voorhees, E. A., (LANL)
 ***DESCRIPTION

 Subroutine CNBIR solves a general nonsymmetric banded NxN
 system of single precision complex linear equations using
 SLATEC subroutines CNBFA and CNBSL. These are adaptations
 of the LINPACK subroutines CGBFA and CGBSL which require
 a different format for storing the matrix elements.
 One pass of iterative refinement is used only to obtain an
 estimate of the accuracy. If A is an NxN complex banded
 matrix and if X and B are complex N-vectors, then CNBIR
 solves the equation

 A*X=B.

 A band matrix is a matrix whose nonzero elements are all
 fairly near the main diagonal, specifically A(I,J) = 0
 if I-J is greater than ML or J-I is greater than
 MU . The integers ML and MU are called the lower and upper
 band widths and M = ML+MU+1 is the total band width.
 CNBIR uses less time and storage than the corresponding
 program for general matrices (CGEIR) if 2*ML+MU .LT. N .

 The matrix A is first factored into upper and lower tri-
 angular matrices U and L using partial pivoting. These
 factors and the pivoting information are used to find the
 solution vector X . Then the residual vector is found and used
 to calculate an estimate of the relative error, IND . IND esti-
 mates the accuracy of the solution only when the input matrix
 and the right hand side are represented exactly in the computer
 and does not take into account any errors in the input data.

 If the equation A*X=B is to be solved for more than one vector
 B, the factoring of A does not need to be performed again and
 the option to only solve (ITASK .GT. 1) will be faster for
 the succeeding solutions. In this case, the contents of A, LDA,
 N, WORK and IWORK must not have been altered by the user follow-
 ing factorization (ITASK=1). IND will not be changed by CNBIR
 in this case.

 Band Storage

 If A is a band matrix, the following program segment
 will set up the input.

 ML = (band width below the diagonal)

SLATEC2 (AAAAAA through D9UPAK) - 315

 MU = (band width above the diagonal)
 DO 20 I = 1, N
 J1 = MAX(1, I-ML)
 J2 = MIN(N, I+MU)
 DO 10 J = J1, J2
 K = J - I + ML + 1
 ABE(I,K) = A(I,J)
 10 CONTINUE
 20 CONTINUE

 This uses columns 1 through ML+MU+1 of ABE .

 Example: If the original matrix is

 11 12 13 0 0 0
 21 22 23 24 0 0
 0 32 33 34 35 0
 0 0 43 44 45 46
 0 0 0 54 55 56
 0 0 0 0 65 66

 then N = 6, ML = 1, MU = 2, LDA .GE. 5 and ABE should contain

 * 11 12 13 , * = not used
 21 22 23 24
 32 33 34 35
 43 44 45 46
 54 55 56 *
 65 66 * *

 Argument Description ***

 ABE COMPLEX(LDA,MM)
 on entry, contains the matrix in band storage as
 described above. MM must not be less than M =
 ML+MU+1 . The user is cautioned to dimension ABE
 with care since MM is not an argument and cannot
 be checked by CNBIR. The rows of the original
 matrix are stored in the rows of ABE and the
 diagonals of the original matrix are stored in
 columns 1 through ML+MU+1 of ABE . ABE is
 not altered by the program.
 LDA INTEGER
 the leading dimension of array ABE. LDA must be great-
 er than or equal to N. (terminal error message IND=-1)
 N INTEGER
 the order of the matrix A. N must be greater
 than or equal to 1 . (terminal error message IND=-2)
 ML INTEGER
 the number of diagonals below the main diagonal.
 ML must not be less than zero nor greater than or
 equal to N . (terminal error message IND=-5)
 MU INTEGER
 the number of diagonals above the main diagonal.
 MU must not be less than zero nor greater than or
 equal to N . (terminal error message IND=-6)
 V COMPLEX(N)
 on entry, the singly subscripted array(vector) of di-
 mension N which contains the right hand side B of a

SLATEC2 (AAAAAA through D9UPAK) - 316

 system of simultaneous linear equations A*X=B.
 on return, V contains the solution vector, X .
 ITASK INTEGER
 if ITASK=1, the matrix A is factored and then the
 linear equation is solved.
 if ITASK .GT. 1, the equation is solved using the existing
 factored matrix A and IWORK.
 if ITASK .LT. 1, then terminal error message IND=-3 is
 printed.
 IND INTEGER
 GT. 0 IND is a rough estimate of the number of digits
 of accuracy in the solution, X . IND=75 means
 that the solution vector X is zero.
 LT. 0 see error message corresponding to IND below.
 WORK COMPLEX(N*(NC+1))
 a singly subscripted array of dimension at least
 N*(NC+1) where NC = 2*ML+MU+1 .
 IWORK INTEGER(N)
 a singly subscripted array of dimension at least N.

 Error Messages Printed ***

 IND=-1 terminal N is greater than LDA.
 IND=-2 terminal N is less than 1.
 IND=-3 terminal ITASK is less than 1.
 IND=-4 terminal The matrix A is computationally singular.
 A solution has not been computed.
 IND=-5 terminal ML is less than zero or is greater than
 or equal to N .
 IND=-6 terminal MU is less than zero or is greater than
 or equal to N .
 IND=-10 warning The solution has no apparent significance.
 The solution may be inaccurate or the matrix
 A may be poorly scaled.

 NOTE- The above terminal(*fatal*) error messages are
 designed to be handled by XERMSG in which
 LEVEL=1 (recoverable) and IFLAG=2 . LEVEL=0
 for warning error messages from XERMSG. Unless
 the user provides otherwise, an error message
 will be printed followed by an abort.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CCOPY, CDCDOT, CNBFA, CNBSL, R1MACH, SCASUM, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800819 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900510 Convert XERRWV calls to XERMSG calls, cvt GOTO's to
 IF-THEN-ELSE. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 317

CNBSL

 SUBROUTINE CNBSL (ABE, LDA, N, ML, MU, IPVT, B, JOB)
 ***BEGIN PROLOGUE CNBSL
 ***PURPOSE Solve a complex band system using the factors computed by
 CNBCO or CNBFA.
 ***LIBRARY SLATEC
 ***CATEGORY D2C2
 ***TYPE COMPLEX (SNBSL-S, DNBSL-D, CNBSL-C)
 ***KEYWORDS BANDED, LINEAR EQUATIONS, NONSYMMETRIC, SOLVE
 ***AUTHOR Voorhees, E. A., (LANL)
 ***DESCRIPTION

 CNBSL solves the complex band system
 A * X = B or CTRANS(A) * X = B
 using the factors computed by CNBCO or CNBFA.

 On Entry

 ABE COMPLEX(LDA, NC)
 the output from CNBCO or CNBFA.
 NC must be .GE. 2*ML+MU+1 .

 LDA INTEGER
 the leading dimension of the array ABE .

 N INTEGER
 the order of the original matrix.

 ML INTEGER
 number of diagonals below the main diagonal.

 MU INTEGER
 number of diagonals above the main diagonal.

 IPVT INTEGER(N)
 the pivot vector from CNBCO or CNBFA.

 B COMPLEX(N)
 the right hand side vector.

 JOB INTEGER
 = 0 to solve A*X = B .
 = nonzero to solve CTRANS(A)*X = B , where
 CTRANS(A) is the conjugate transpose.

 On Return

 B the solution vector X .

 Error Condition

 A division by zero will occur if the input factor contains a
 zero on the diagonal. Technically this indicates singularity
 but it is often caused by improper arguments or improper
 setting of LDA. It will not occur if the subroutines are
 called correctly and if CNBCO has set RCOND .GT. 0.0
 or CNBFA has set INFO .EQ. 0 .

SLATEC2 (AAAAAA through D9UPAK) - 318

 To compute INVERSE(A) * C where C is a matrix
 with P columns
 CALL CNBCO(ABE,LDA,N,ML,MU,IPVT,RCOND,Z)
 IF (RCOND is too small) GO TO ...
 DO 10 J = 1, P
 CALL CNBSL(ABE,LDA,N,ML,MU,IPVT,C(1,J),0)
 10 CONTINUE

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CAXPY, CDOTC
 ***REVISION HISTORY (YYMMDD)
 800730 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 319

COMBAK

 SUBROUTINE COMBAK (NM, LOW, IGH, AR, AI, INT, M, ZR, ZI)
 ***BEGIN PROLOGUE COMBAK
 ***PURPOSE Form the eigenvectors of a complex general matrix from the
 eigenvectors of a upper Hessenberg matrix output from
 COMHES.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4C4
 ***TYPE COMPLEX (ELMBAK-S, COMBAK-C)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of the ALGOL procedure COMBAK,
 NUM. MATH. 12, 349-368(1968) by Martin and Wilkinson.
 HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 339-358(1971).

 This subroutine forms the eigenvectors of a COMPLEX GENERAL
 matrix by back transforming those of the corresponding
 upper Hessenberg matrix determined by COMHES.

 On INPUT

 NM must be set to the row dimension of the two-dimensional
 array parameters, AR, AI, ZR and ZI, as declared in the
 calling program dimension statement. NM is an INTEGER
 variable.

 LOW and IGH are two INTEGER variables determined by the
 balancing subroutine CBAL. If CBAL has not been used,
 set LOW=1 and IGH equal to the order of the matrix.

 AR and AI contain the multipliers which were used in the
 reduction by COMHES in their lower triangles below
 the subdiagonal. AR and AI are two-dimensional REAL
 arrays, dimensioned AR(NM,IGH) and AI(NM,IGH).

 INT contains information on the rows and columns
 interchanged in the reduction by COMHES. Only
 elements LOW through IGH are used. INT is a
 one-dimensional INTEGER array, dimensioned INT(IGH).

 M is the number of eigenvectors to be back transformed.
 M is an INTEGER variable.

 ZR and ZI contain the real and imaginary parts, respectively,
 of the eigenvectors to be back transformed in their first M
 columns. ZR and ZI are two-dimensional REAL arrays,
 dimensioned ZR(NM,M) and ZI(NM,M).

 On OUTPUT

 ZR and ZI contain the real and imaginary parts, respectively,
 of the transformed eigenvectors in their first M columns.

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY

SLATEC2 (AAAAAA through D9UPAK) - 320

 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 321

COMHES

 SUBROUTINE COMHES (NM, N, LOW, IGH, AR, AI, INT)
 ***BEGIN PROLOGUE COMHES
 ***PURPOSE Reduce a complex general matrix to complex upper Hessenberg
 form using stabilized elementary similarity
 transformations.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4C1B2
 ***TYPE COMPLEX (ELMHES-S, COMHES-C)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of the ALGOL procedure COMHES,
 NUM. MATH. 12, 349-368(1968) by Martin and Wilkinson.
 HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 339-358(1971).

 Given a COMPLEX GENERAL matrix, this subroutine
 reduces a submatrix situated in rows and columns
 LOW through IGH to upper Hessenberg form by
 stabilized elementary similarity transformations.

 On INPUT

 NM must be set to the row dimension of the two-dimensional
 array parameters, AR and AI, as declared in the calling
 program dimension statement. NM is an INTEGER variable.

 N is the order of the matrix A=(AR,AI). N is an INTEGER
 variable. N must be less than or equal to NM.

 LOW and IGH are two INTEGER variables determined by the
 balancing subroutine CBAL. If CBAL has not been used,
 set LOW=1 and IGH equal to the order of the matrix, N.

 AR and AI contain the real and imaginary parts, respectively,
 of the complex input matrix. AR and AI are two-dimensional
 REAL arrays, dimensioned AR(NM,N) and AI(NM,N).

 On OUTPUT

 AR and AI contain the real and imaginary parts, respectively,
 of the upper Hessenberg matrix. The multipliers which
 were used in the reduction are stored in the remaining
 triangles under the Hessenberg matrix.

 INT contains information on the rows and columns
 interchanged in the reduction. Only elements LOW through
 IGH are used. INT is a one-dimensional INTEGER array,
 dimensioned INT(IGH).

 Calls CDIV for complex division.

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

SLATEC2 (AAAAAA through D9UPAK) - 322

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED CDIV
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 323

COMLR

 SUBROUTINE COMLR (NM, N, LOW, IGH, HR, HI, WR, WI, IERR)
 ***BEGIN PROLOGUE COMLR
 ***PURPOSE Compute the eigenvalues of a complex upper Hessenberg
 matrix using the modified LR method.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4C2B
 ***TYPE COMPLEX (COMLR-C)
 ***KEYWORDS EIGENVALUES, EISPACK, LR METHOD
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of the ALGOL procedure COMLR,
 NUM. MATH. 12, 369-376(1968) by Martin and Wilkinson.
 HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 396-403(1971).

 This subroutine finds the eigenvalues of a COMPLEX
 UPPER Hessenberg matrix by the modified LR method.

 On INPUT

 NM must be set to the row dimension of the two-dimensional
 array parameters, HR and HI, as declared in the calling
 program dimension statement. NM is an INTEGER variable.

 N is the order of the matrix H=(HR,HI). N is an INTEGER
 variable. N must be less than or equal to NM.

 LOW and IGH are two INTEGER variables determined by the
 balancing subroutine CBAL. If CBAL has not been used,
 set LOW=1 and IGH equal to the order of the matrix, N.

 HR and HI contain the real and imaginary parts, respectively,
 of the complex upper Hessenberg matrix. Their lower
 triangles below the subdiagonal contain the multipliers
 which were used in the reduction by COMHES, if performed.
 HR and HI are two-dimensional REAL arrays, dimensioned
 HR(NM,N) and HI(NM,N).

 On OUTPUT

 The upper Hessenberg portions of HR and HI have been
 destroyed. Therefore, they must be saved before calling
 COMLR if subsequent calculation of eigenvectors is to
 be performed.

 WR and WI contain the real and imaginary parts, respectively,
 of the eigenvalues of the upper Hessenberg matrix. If an
 error exit is made, the eigenvalues should be correct for
 indices IERR+1, IERR+2, ..., N. WR and WI are one-
 dimensional REAL arrays, dimensioned WR(N) and WI(N).

 IERR is an INTEGER flag set to
 Zero for normal return,
 J if the J-th eigenvalue has not been
 determined after a total of 30*N iterations.
 The eigenvalues should be correct for indices

SLATEC2 (AAAAAA through D9UPAK) - 324

 IERR+1, IERR+2, ..., N.

 Calls CSROOT for complex square root.
 Calls CDIV for complex division.

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED CDIV, CSROOT
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 325

COMLR2

 SUBROUTINE COMLR2 (NM, N, LOW, IGH, INT, HR, HI, WR, WI, ZR, ZI,
 + IERR)
 ***BEGIN PROLOGUE COMLR2
 ***PURPOSE Compute the eigenvalues and eigenvectors of a complex upper
 Hessenberg matrix using the modified LR method.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4C2B
 ***TYPE COMPLEX (COMLR2-C)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK, LR METHOD
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of the ALGOL procedure COMLR2,
 NUM. MATH. 16, 181-204(1970) by Peters and Wilkinson.
 HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 372-395(1971).

 This subroutine finds the eigenvalues and eigenvectors
 of a COMPLEX UPPER Hessenberg matrix by the modified LR
 method. The eigenvectors of a COMPLEX GENERAL matrix
 can also be found if COMHES has been used to reduce
 this general matrix to Hessenberg form.

 On INPUT

 NM must be set to the row dimension of the two-dimensional
 array parameters, HR, HI, ZR and ZI, as declared in the
 calling program dimension statement. NM is an INTEGER
 variable.

 N is the order of the matrix H=(HR,HI). N is an INTEGER
 variable. N must be less than or equal to NM.

 LOW and IGH are two INTEGER variables determined by the
 balancing subroutine CBAL. If CBAL has not been used,
 set LOW=1 and IGH equal to the order of the matrix, N.

 INT contains information on the rows and columns
 interchanged in the reduction by COMHES, if performed.
 Only elements LOW through IGH are used. If you want the
 eigenvectors of a complex general matrix, leave INT as it
 came from COMHES. If the eigenvectors of the Hessenberg
 matrix are desired, set INT(J)=J for these elements. INT
 is a one-dimensional INTEGER array, dimensioned INT(IGH).

 HR and HI contain the real and imaginary parts, respectively,
 of the complex upper Hessenberg matrix. Their lower
 triangles below the subdiagonal contain the multipliers
 which were used in the reduction by COMHES, if performed.
 If the eigenvectors of a complex general matrix are
 desired, leave these multipliers in the lower triangles.
 If the eigenvectors of the Hessenberg matrix are desired,
 these elements must be set to zero. HR and HI are
 two-dimensional REAL arrays, dimensioned HR(NM,N) and
 HI(NM,N).

 On OUTPUT

SLATEC2 (AAAAAA through D9UPAK) - 326

 The upper Hessenberg portions of HR and HI have been
 destroyed, but the location HR(1,1) contains the norm
 of the triangularized matrix.

 WR and WI contain the real and imaginary parts, respectively,
 of the eigenvalues of the upper Hessenberg matrix. If an
 error exit is made, the eigenvalues should be correct for
 indices IERR+1, IERR+2, ..., N. WR and WI are one-
 dimensional REAL arrays, dimensioned WR(N) and WI(N).

 ZR and ZI contain the real and imaginary parts, respectively,
 of the eigenvectors. The eigenvectors are unnormalized.
 If an error exit is made, none of the eigenvectors has been
 found. ZR and ZI are two-dimensional REAL arrays,
 dimensioned ZR(NM,N) and ZI(NM,N).

 IERR is an INTEGER flag set to
 Zero for normal return,
 J if the J-th eigenvalue has not been
 determined after a total of 30*N iterations.
 The eigenvalues should be correct for indices
 IERR+1, IERR+2, ..., N, but no eigenvectors are
 computed.

 Calls CSROOT for complex square root.
 Calls CDIV for complex division.

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED CDIV, CSROOT
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 327

COMQR

 SUBROUTINE COMQR (NM, N, LOW, IGH, HR, HI, WR, WI, IERR)
 ***BEGIN PROLOGUE COMQR
 ***PURPOSE Compute the eigenvalues of complex upper Hessenberg matrix
 using the QR method.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4C2B
 ***TYPE COMPLEX (HQR-S, COMQR-C)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of a unitary analogue of the
 ALGOL procedure COMLR, NUM. MATH. 12, 369-376(1968) by Martin
 and Wilkinson.
 HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 396-403(1971).
 The unitary analogue substitutes the QR algorithm of Francis
 (COMP. JOUR. 4, 332-345(1962)) for the LR algorithm.

 This subroutine finds the eigenvalues of a COMPLEX
 upper Hessenberg matrix by the QR method.

 On INPUT

 NM must be set to the row dimension of the two-dimensional
 array parameters, HR and HI, as declared in the calling
 program dimension statement. NM is an INTEGER variable.

 N is the order of the matrix H=(HR,HI). N is an INTEGER
 variable. N must be less than or equal to NM.

 LOW and IGH are two INTEGER variables determined by the
 balancing subroutine CBAL. If CBAL has not been used,
 set LOW=1 and IGH equal to the order of the matrix, N.

 HR and HI contain the real and imaginary parts, respectively,
 of the complex upper Hessenberg matrix. Their lower
 triangles below the subdiagonal contain information about
 the unitary transformations used in the reduction by CORTH,
 if performed. HR and HI are two-dimensional REAL arrays,
 dimensioned HR(NM,N) and HI(NM,N).

 On OUTPUT

 The upper Hessenberg portions of HR and HI have been
 destroyed. Therefore, they must be saved before calling
 COMQR if subsequent calculation of eigenvectors is to
 be performed.

 WR and WI contain the real and imaginary parts, respectively,
 of the eigenvalues of the upper Hessenberg matrix. If an
 error exit is made, the eigenvalues should be correct for
 indices IERR+1, IERR+2, ..., N. WR and WI are one-
 dimensional REAL arrays, dimensioned WR(N) and WI(N).

 IERR is an INTEGER flag set to
 Zero for normal return,

SLATEC2 (AAAAAA through D9UPAK) - 328

 J if the J-th eigenvalue has not been
 determined after a total of 30*N iterations.
 The eigenvalues should be correct for indices
 IERR+1, IERR+2, ..., N.

 Calls CSROOT for complex square root.
 Calls PYTHAG(A,B) for sqrt(A**2 + B**2).
 Calls CDIV for complex division.

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED CDIV, CSROOT, PYTHAG
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 329

COMQR2

 SUBROUTINE COMQR2 (NM, N, LOW, IGH, ORTR, ORTI, HR, HI, WR, WI,
 + ZR, ZI, IERR)
 ***BEGIN PROLOGUE COMQR2
 ***PURPOSE Compute the eigenvalues and eigenvectors of a complex upper
 Hessenberg matrix.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4C2B
 ***TYPE COMPLEX (HQR2-S, COMQR2-C)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of a unitary analogue of the
 ALGOL procedure COMLR2, NUM. MATH. 16, 181-204(1970) by Peters
 and Wilkinson.
 HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 372-395(1971).
 The unitary analogue substitutes the QR algorithm of Francis
 (COMP. JOUR. 4, 332-345(1962)) for the LR algorithm.

 This subroutine finds the eigenvalues and eigenvectors
 of a COMPLEX UPPER Hessenberg matrix by the QR
 method. The eigenvectors of a COMPLEX GENERAL matrix
 can also be found if CORTH has been used to reduce
 this general matrix to Hessenberg form.

 On INPUT

 NM must be set to the row dimension of the two-dimensional
 array parameters, HR, HI, ZR, and ZI, as declared in the
 calling program dimension statement. NM is an INTEGER
 variable.

 N is the order of the matrix H=(HR,HI). N is an INTEGER
 variable. N must be less than or equal to NM.

 LOW and IGH are two INTEGER variables determined by the
 balancing subroutine CBAL. If CBAL has not been used,
 set LOW=1 and IGH equal to the order of the matrix, N.

 ORTR and ORTI contain information about the unitary trans-
 formations used in the reduction by CORTH, if performed.
 Only elements LOW through IGH are used. If the eigenvectors
 of the Hessenberg matrix are desired, set ORTR(J) and
 ORTI(J) to 0.0E0 for these elements. ORTR and ORTI are
 one-dimensional REAL arrays, dimensioned ORTR(IGH) and
 ORTI(IGH).

 HR and HI contain the real and imaginary parts, respectively,
 of the complex upper Hessenberg matrix. Their lower
 triangles below the subdiagonal contain information about
 the unitary transformations used in the reduction by CORTH,
 if performed. If the eigenvectors of the Hessenberg matrix
 are desired, these elements may be arbitrary. HR and HI
 are two-dimensional REAL arrays, dimensioned HR(NM,N) and
 HI(NM,N).

SLATEC2 (AAAAAA through D9UPAK) - 330

 On OUTPUT

 ORTR, ORTI, and the upper Hessenberg portions of HR and HI
 have been destroyed.

 WR and WI contain the real and imaginary parts, respectively,
 of the eigenvalues of the upper Hessenberg matrix. If an
 error exit is made, the eigenvalues should be correct for
 indices IERR+1, IERR+2, ..., N. WR and WI are one-
 dimensional REAL arrays, dimensioned WR(N) and WI(N).

 ZR and ZI contain the real and imaginary parts, respectively,
 of the eigenvectors. The eigenvectors are unnormalized.
 If an error exit is made, none of the eigenvectors has been
 found. ZR and ZI are two-dimensional REAL arrays,
 dimensioned ZR(NM,N) and ZI(NM,N).

 IERR is an INTEGER flag set to
 Zero for normal return,
 J if the J-th eigenvalue has not been
 determined after a total of 30*N iterations.
 The eigenvalues should be correct for indices
 IERR+1, IERR+2, ..., N, but no eigenvectors are
 computed.

 Calls CSROOT for complex square root.
 Calls PYTHAG(A,B) for sqrt(A**2 + B**2).
 Calls CDIV for complex division.

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED CDIV, CSROOT, PYTHAG
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 331

CORTB

 SUBROUTINE CORTB (NM, LOW, IGH, AR, AI, ORTR, ORTI, M, ZR, ZI)
 ***BEGIN PROLOGUE CORTB
 ***PURPOSE Form the eigenvectors of a complex general matrix from
 eigenvectors of upper Hessenberg matrix output from
 CORTH.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4C4
 ***TYPE COMPLEX (ORTBAK-S, CORTB-C)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of a complex analogue of
 the ALGOL procedure ORTBAK, NUM. MATH. 12, 349-368(1968)
 by Martin and Wilkinson.
 HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 339-358(1971).

 This subroutine forms the eigenvectors of a COMPLEX GENERAL
 matrix by back transforming those of the corresponding
 upper Hessenberg matrix determined by CORTH.

 On INPUT

 NM must be set to the row dimension of the two-dimensional
 array parameters, AR, AI, ZR, and ZI, as declared in the
 calling program dimension statement. NM is an INTEGER
 variable.

 LOW and IGH are two INTEGER variables determined by the
 balancing subroutine CBAL. If CBAL has not been used,
 set LOW=1 and IGH equal to the order of the matrix.

 AR and AI contain information about the unitary trans-
 formations used in the reduction by CORTH in their
 strict lower triangles. AR and AI are two-dimensional
 REAL arrays, dimensioned AR(NM,IGH) and AI(NM,IGH).

 ORTR and ORTI contain further information about the unitary
 transformations used in the reduction by CORTH. Only
 elements LOW through IGH are used. ORTR and ORTI are
 one-dimensional REAL arrays, dimensioned ORTR(IGH) and
 ORTI(IGH).

 M is the number of columns of Z=(ZR,ZI) to be back transformed.
 M is an INTEGER variable.

 ZR and ZI contain the real and imaginary parts, respectively,
 of the eigenvectors to be back transformed in their first
 M columns. ZR and ZI are two-dimensional REAL arrays,
 dimensioned ZR(NM,M) and ZI(NM,M).

 On OUTPUT

 ZR and ZI contain the real and imaginary parts, respectively,
 of the transformed eigenvectors in their first M columns.

SLATEC2 (AAAAAA through D9UPAK) - 332

 ORTR and ORTI have been altered.

 Note that CORTB preserves vector Euclidean norms.

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 333

CORTH

 SUBROUTINE CORTH (NM, N, LOW, IGH, AR, AI, ORTR, ORTI)
 ***BEGIN PROLOGUE CORTH
 ***PURPOSE Reduce a complex general matrix to complex upper Hessenberg
 form using unitary similarity transformations.
 ***LIBRARY SLATEC (EISPACK)
 ***CATEGORY D4C1B2
 ***TYPE COMPLEX (ORTHES-S, CORTH-C)
 ***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
 ***AUTHOR Smith, B. T., et al.
 ***DESCRIPTION

 This subroutine is a translation of a complex analogue of
 the ALGOL procedure ORTHES, NUM. MATH. 12, 349-368(1968)
 by Martin and Wilkinson.
 HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 339-358(1971).

 Given a COMPLEX GENERAL matrix, this subroutine
 reduces a submatrix situated in rows and columns
 LOW through IGH to upper Hessenberg form by
 unitary similarity transformations.

 On INPUT

 NM must be set to the row dimension of the two-dimensional
 array parameters, AR and AI, as declared in the calling
 program dimension statement. NM is an INTEGER variable.

 N is the order of the matrix A=(AR,AI). N is an INTEGER
 variable. N must be less than or equal to NM.

 LOW and IGH are two INTEGER variables determined by the
 balancing subroutine CBAL. If CBAL has not been used,
 set LOW=1 and IGH equal to the order of the matrix, N.

 AR and AI contain the real and imaginary parts, respectively,
 of the complex input matrix. AR and AI are two-dimensional
 REAL arrays, dimensioned AR(NM,N) and AI(NM,N).

 On OUTPUT

 AR and AI contain the real and imaginary parts, respectively,
 of the Hessenberg matrix. Information about the unitary
 transformations used in the reduction is stored in the
 remaining triangles under the Hessenberg matrix.

 ORTR and ORTI contain further information about the unitary
 transformations. Only elements LOW through IGH are used.
 ORTR and ORTI are one-dimensional REAL arrays, dimensioned
 ORTR(IGH) and ORTI(IGH).

 Calls PYTHAG(A,B) for sqrt(A**2 + B**2).

 Questions and comments should be directed to B. S. Garbow,
 APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
 --

SLATEC2 (AAAAAA through D9UPAK) - 334

 ***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
 Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
 system Routines - EISPACK Guide, Springer-Verlag,
 1976.
 ***ROUTINES CALLED PYTHAG
 ***REVISION HISTORY (YYMMDD)
 760101 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 335

COSDG

 FUNCTION COSDG (X)
 ***BEGIN PROLOGUE COSDG
 ***PURPOSE Compute the cosine of an argument in degrees.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C4A
 ***TYPE SINGLE PRECISION (COSDG-S, DCOSDG-D)
 ***KEYWORDS COSINE, DEGREES, ELEMENTARY FUNCTIONS, FNLIB,
 TRIGONOMETRIC
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 COSDG(X) evaluates the cosine for real X in degrees.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 770601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 336

COSQB

 SUBROUTINE COSQB (N, X, WSAVE)
 ***BEGIN PROLOGUE COSQB
 ***PURPOSE Compute the unnormalized inverse cosine transform.
 ***LIBRARY SLATEC (FFTPACK)
 ***CATEGORY J1A3
 ***TYPE SINGLE PRECISION (COSQB-S)
 ***KEYWORDS FFTPACK, INVERSE COSINE FOURIER TRANSFORM
 ***AUTHOR Swarztrauber, P. N., (NCAR)
 ***DESCRIPTION

 Subroutine COSQB computes the fast Fourier transform of quarter
 wave data. That is, COSQB computes a sequence from its
 representation in terms of a cosine series with odd wave numbers.
 The transform is defined below at output parameter X.

 COSQB is the unnormalized inverse of COSQF since a call of COSQB
 followed by a call of COSQF will multiply the input sequence X
 by 4*N.

 The array WSAVE which is used by subroutine COSQB must be
 initialized by calling subroutine COSQI(N,WSAVE).

 Input Parameters

 N the length of the array X to be transformed. The method
 is most efficient when N is a product of small primes.

 X an array which contains the sequence to be transformed

 WSAVE a work array which must be dimensioned at least 3*N+15
 in the program that calls COSQB. The WSAVE array must be
 initialized by calling subroutine COSQI(N,WSAVE), and a
 different WSAVE array must be used for each different
 value of N. This initialization does not have to be
 repeated so long as N remains unchanged. Thus subsequent
 transforms can be obtained faster than the first.

 Output Parameters

 X For I=1,...,N

 X(I)= the sum from K=1 to K=N of

 2*X(K)*COS((2*K-1)*(I-1)*PI/(2*N))

 A call of COSQB followed by a call of
 COSQF will multiply the sequence X by 4*N.
 Therefore COSQF is the unnormalized inverse
 of COSQB.

 WSAVE contains initialization calculations which must not
 be destroyed between calls of COSQB or COSQF.

 ***REFERENCES P. N. Swarztrauber, Vectorizing the FFTs, in Parallel
 Computations (G. Rodrigue, ed.), Academic Press,

SLATEC2 (AAAAAA through D9UPAK) - 337

 1982, pp. 51-83.
 ***ROUTINES CALLED COSQB1
 ***REVISION HISTORY (YYMMDD)
 790601 DATE WRITTEN
 830401 Modified to use SLATEC library source file format.
 860115 Modified by Ron Boisvert to adhere to Fortran 77 by
 (a) changing dummy array size declarations (1) to (*),
 (b) changing definition of variable TSQRT2 by using
 FORTRAN intrinsic function SQRT instead of a DATA
 statement.
 861211 REVISION DATE from Version 3.2
 881128 Modified by Dick Valent to meet prologue standards.
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 338

COSQF

 SUBROUTINE COSQF (N, X, WSAVE)
 ***BEGIN PROLOGUE COSQF
 ***PURPOSE Compute the forward cosine transform with odd wave numbers.
 ***LIBRARY SLATEC (FFTPACK)
 ***CATEGORY J1A3
 ***TYPE SINGLE PRECISION (COSQF-S)
 ***KEYWORDS COSINE FOURIER TRANSFORM, FFTPACK
 ***AUTHOR Swarztrauber, P. N., (NCAR)
 ***DESCRIPTION

 Subroutine COSQF computes the fast Fourier transform of quarter
 wave data. That is, COSQF computes the coefficients in a cosine
 series representation with only odd wave numbers. The transform
 is defined below at Output Parameter X

 COSQF is the unnormalized inverse of COSQB since a call of COSQF
 followed by a call of COSQB will multiply the input sequence X
 by 4*N.

 The array WSAVE which is used by subroutine COSQF must be
 initialized by calling subroutine COSQI(N,WSAVE).

 Input Parameters

 N the length of the array X to be transformed. The method
 is most efficient when N is a product of small primes.

 X an array which contains the sequence to be transformed

 WSAVE a work array which must be dimensioned at least 3*N+15
 in the program that calls COSQF. The WSAVE array must be
 initialized by calling subroutine COSQI(N,WSAVE), and a
 different WSAVE array must be used for each different
 value of N. This initialization does not have to be
 repeated so long as N remains unchanged. Thus subsequent
 transforms can be obtained faster than the first.

 Output Parameters

 X For I=1,...,N

 X(I) = X(1) plus the sum from K=2 to K=N of

 2*X(K)*COS((2*I-1)*(K-1)*PI/(2*N))

 A call of COSQF followed by a call of
 COSQB will multiply the sequence X by 4*N.
 Therefore COSQB is the unnormalized inverse
 of COSQF.

 WSAVE contains initialization calculations which must not
 be destroyed between calls of COSQF or COSQB.

 ***REFERENCES P. N. Swarztrauber, Vectorizing the FFTs, in Parallel
 Computations (G. Rodrigue, ed.), Academic Press,

SLATEC2 (AAAAAA through D9UPAK) - 339

 1982, pp. 51-83.
 ***ROUTINES CALLED COSQF1
 ***REVISION HISTORY (YYMMDD)
 790601 DATE WRITTEN
 830401 Modified to use SLATEC library source file format.
 860115 Modified by Ron Boisvert to adhere to Fortran 77 by
 (a) changing dummy array size declarations (1) to (*),
 (b) changing definition of variable SQRT2 by using
 FORTRAN intrinsic function SQRT instead of a DATA
 statement.
 861211 REVISION DATE from Version 3.2
 881128 Modified by Dick Valent to meet prologue standards.
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 340

COSQI

 SUBROUTINE COSQI (N, WSAVE)
 ***BEGIN PROLOGUE COSQI
 ***PURPOSE Initialize a work array for COSQF and COSQB.
 ***LIBRARY SLATEC (FFTPACK)
 ***CATEGORY J1A3
 ***TYPE SINGLE PRECISION (COSQI-S)
 ***KEYWORDS COSINE FOURIER TRANSFORM, FFTPACK
 ***AUTHOR Swarztrauber, P. N., (NCAR)
 ***DESCRIPTION

 Subroutine COSQI initializes the work array WSAVE which is used in
 both COSQF1 and COSQB1. The prime factorization of N together with
 a tabulation of the trigonometric functions are computed and
 stored in WSAVE.

 Input Parameter

 N the length of the array to be transformed. The method
 is most efficient when N is a product of small primes.

 Output Parameter

 WSAVE a work array which must be dimensioned at least 3*N+15.
 The same work array can be used for both COSQF1 and COSQB1
 as long as N remains unchanged. Different WSAVE arrays
 are required for different values of N. The contents of
 WSAVE must not be changed between calls of COSQF1 or COSQB1.

 ***REFERENCES P. N. Swarztrauber, Vectorizing the FFTs, in Parallel
 Computations (G. Rodrigue, ed.), Academic Press,
 1982, pp. 51-83.
 ***ROUTINES CALLED RFFTI
 ***REVISION HISTORY (YYMMDD)
 790601 DATE WRITTEN
 830401 Modified to use SLATEC library source file format.
 860115 Modified by Ron Boisvert to adhere to Fortran 77 by
 (a) changing dummy array size declarations (1) to (*),
 (b) changing references to intrinsic function FLOAT
 to REAL, and
 (c) changing definition of variable PIH by using
 FORTRAN intrinsic function ATAN instead of a DATA
 statement.
 881128 Modified by Dick Valent to meet prologue standards.
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 341

COST

 SUBROUTINE COST (N, X, WSAVE)
 ***BEGIN PROLOGUE COST
 ***PURPOSE Compute the cosine transform of a real, even sequence.
 ***LIBRARY SLATEC (FFTPACK)
 ***CATEGORY J1A3
 ***TYPE SINGLE PRECISION (COST-S)
 ***KEYWORDS COSINE FOURIER TRANSFORM, FFTPACK
 ***AUTHOR Swarztrauber, P. N., (NCAR)
 ***DESCRIPTION

 Subroutine COST computes the discrete Fourier cosine transform
 of an even sequence X(I). The transform is defined below at output
 parameter X.

 COST is the unnormalized inverse of itself since a call of COST
 followed by another call of COST will multiply the input sequence
 X by 2*(N-1). The transform is defined below at output parameter X.

 The array WSAVE which is used by subroutine COST must be
 initialized by calling subroutine COSTI(N,WSAVE).

 Input Parameters

 N the length of the sequence X. N must be greater than 1.
 The method is most efficient when N-1 is a product of
 small primes.

 X an array which contains the sequence to be transformed

 WSAVE a work array which must be dimensioned at least 3*N+15
 in the program that calls COST. The WSAVE array must be
 initialized by calling subroutine COSTI(N,WSAVE), and a
 different WSAVE array must be used for each different
 value of N. This initialization does not have to be
 repeated so long as N remains unchanged. Thus subsequent
 transforms can be obtained faster than the first.

 Output Parameters

 X For I=1,...,N

 X(I) = X(1)+(-1)**(I-1)*X(N)

 + the sum from K=2 to K=N-1

 2*X(K)*COS((K-1)*(I-1)*PI/(N-1))

 A call of COST followed by another call of
 COST will multiply the sequence X by 2*(N-1).
 Hence COST is the unnormalized inverse
 of itself.

 WSAVE contains initialization calculations which must not be
 destroyed between calls of COST.

 ***REFERENCES P. N. Swarztrauber, Vectorizing the FFTs, in Parallel

SLATEC2 (AAAAAA through D9UPAK) - 342

 Computations (G. Rodrigue, ed.), Academic Press,
 1982, pp. 51-83.
 ***ROUTINES CALLED RFFTF
 ***REVISION HISTORY (YYMMDD)
 790601 DATE WRITTEN
 830401 Modified to use SLATEC library source file format.
 860115 Modified by Ron Boisvert to adhere to Fortran 77 by
 changing dummy array size declarations (1) to (*)
 861211 REVISION DATE from Version 3.2
 881128 Modified by Dick Valent to meet prologue standards.
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 343

COSTI

 SUBROUTINE COSTI (N, WSAVE)
 ***BEGIN PROLOGUE COSTI
 ***PURPOSE Initialize a work array for COST.
 ***LIBRARY SLATEC (FFTPACK)
 ***CATEGORY J1A3
 ***TYPE SINGLE PRECISION (COSTI-S)
 ***KEYWORDS COSINE FOURIER TRANSFORM, FFTPACK
 ***AUTHOR Swarztrauber, P. N., (NCAR)
 ***DESCRIPTION

 Subroutine COSTI initializes the array WSAVE which is used in
 subroutine COST. The prime factorization of N together with
 a tabulation of the trigonometric functions are computed and
 stored in WSAVE.

 Input Parameter

 N the length of the sequence to be transformed. The method
 is most efficient when N-1 is a product of small primes.

 Output Parameter

 WSAVE a work array which must be dimensioned at least 3*N+15.
 Different WSAVE arrays are required for different values
 of N. The contents of WSAVE must not be changed between
 calls of COST.

 ***REFERENCES P. N. Swarztrauber, Vectorizing the FFTs, in Parallel
 Computations (G. Rodrigue, ed.), Academic Press,
 1982, pp. 51-83.
 ***ROUTINES CALLED RFFTI
 ***REVISION HISTORY (YYMMDD)
 790601 DATE WRITTEN
 830401 Modified to use SLATEC library source file format.
 860115 Modified by Ron Boisvert to adhere to Fortran 77 by
 (a) changing dummy array size declarations (1) to (*),
 (b) changing references to intrinsic function FLOAT
 to REAL, and
 (c) changing definition of variable PI by using
 FORTRAN intrinsic function ATAN instead of a DATA
 statement.
 881128 Modified by Dick Valent to meet prologue standards.
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 344

COT

 FUNCTION COT (X)
 ***BEGIN PROLOGUE COT
 ***PURPOSE Compute the cotangent.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C4A
 ***TYPE SINGLE PRECISION (COT-S, DCOT-D, CCOT-C)
 ***KEYWORDS COTANGENT, ELEMENTARY FUNCTIONS, FNLIB, TRIGONOMETRIC
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 COT(X) calculates the cotangent of the real argument X. X is in
 units of radians.

 Series for COT on the interval 0. to 6.25000D-02
 with weighted error 3.76E-17
 log weighted error 16.42
 significant figures required 15.51
 decimal places required 16.88

 ***REFERENCES (NONE)
 ***ROUTINES CALLED CSEVL, INITS, R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770601 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 920618 Removed space from variable names. (RWC, WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 345

CPBCO

 SUBROUTINE CPBCO (ABD, LDA, N, M, RCOND, Z, INFO)
 ***BEGIN PROLOGUE CPBCO
 ***PURPOSE Factor a complex Hermitian positive definite matrix stored
 in band form and estimate the condition number of the
 matrix.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2D2
 ***TYPE COMPLEX (SPBCO-S, DPBCO-D, CPBCO-C)
 ***KEYWORDS BANDED, CONDITION NUMBER, LINEAR ALGEBRA, LINPACK,
 MATRIX FACTORIZATION, POSITIVE DEFINITE
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 CPBCO factors a complex Hermitian positive definite matrix
 stored in band form and estimates the condition of the matrix.

 If RCOND is not needed, CPBFA is slightly faster.
 To solve A*X = B , follow CPBCO by CPBSL.
 To compute INVERSE(A)*C , follow CPBCO by CPBSL.
 To compute DETERMINANT(A) , follow CPBCO by CPBDI.

 On Entry

 ABD COMPLEX(LDA, N)
 the matrix to be factored. The columns of the upper
 triangle are stored in the columns of ABD and the
 diagonals of the upper triangle are stored in the
 rows of ABD . See the comments below for details.

 LDA INTEGER
 the leading dimension of the array ABD .
 LDA must be .GE. M + 1 .

 N INTEGER
 the order of the matrix A .

 M INTEGER
 the number of diagonals above the main diagonal.
 0 .LE. M .LT. N .

 On Return

 ABD an upper triangular matrix R , stored in band
 form, so that A = CTRANS(R)*R .
 If INFO .NE. 0 , the factorization is not complete.

 RCOND REAL
 an estimate of the reciprocal condition of A .
 For the system A*X = B , relative perturbations
 in A and B of size EPSILON may cause
 relative perturbations in X of size EPSILON/RCOND .
 If RCOND is so small that the logical expression
 1.0 + RCOND .EQ. 1.0
 is true, then A may be singular to working
 precision. In particular, RCOND is zero if
 exact singularity is detected or the estimate

SLATEC2 (AAAAAA through D9UPAK) - 346

 underflows. If INFO .NE. 0 , RCOND is unchanged.

 Z COMPLEX(N)
 a work vector whose contents are usually unimportant.
 If A is singular to working precision, then Z is
 an approximate null vector in the sense that
 NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
 If INFO .NE. 0 , Z is unchanged.

 INFO INTEGER
 = 0 for normal return.
 = K signals an error condition. The leading minor
 of order K is not positive definite.

 Band Storage

 If A is a Hermitian positive definite band matrix,
 the following program segment will set up the input.

 M = (band width above diagonal)
 DO 20 J = 1, N
 I1 = MAX(1, J-M)
 DO 10 I = I1, J
 K = I-J+M+1
 ABD(K,J) = A(I,J)
 10 CONTINUE
 20 CONTINUE

 This uses M + 1 rows of A , except for the M by M
 upper left triangle, which is ignored.

 Example: If the original matrix is

 11 12 13 0 0 0
 12 22 23 24 0 0
 13 23 33 34 35 0
 0 24 34 44 45 46
 0 0 35 45 55 56
 0 0 0 46 56 66

 then N = 6 , M = 2 and ABD should contain

 * * 13 24 35 46
 * 12 23 34 45 56
 11 22 33 44 55 66

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CAXPY, CDOTC, CPBFA, CSSCAL, SCASUM
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 347

CPBDI

 SUBROUTINE CPBDI (ABD, LDA, N, M, DET)
 ***BEGIN PROLOGUE CPBDI
 ***PURPOSE Compute the determinant of a complex Hermitian positive
 definite band matrix using the factors computed by CPBCO or
 CPBFA.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D3D2
 ***TYPE COMPLEX (SPBDI-S, DPBDI-D, CPBDI-C)
 ***KEYWORDS BANDED, DETERMINANT, INVERSE, LINEAR ALGEBRA, LINPACK,
 MATRIX, POSITIVE DEFINITE
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 CPBDI computes the determinant
 of a complex Hermitian positive definite band matrix
 using the factors computed by CPBCO or CPBFA.
 If the inverse is needed, use CPBSL N times.

 On Entry

 ABD COMPLEX(LDA, N)
 the output from CPBCO or CPBFA.

 LDA INTEGER
 the leading dimension of the array ABD .

 N INTEGER
 the order of the matrix A .

 M INTEGER
 the number of diagonals above the main diagonal.

 On Return

 DET REAL(2)
 determinant of original matrix in the form
 determinant = DET(1) * 10.0**DET(2)
 with 1.0 .LE. DET(1) .LT. 10.0
 or DET(1) .EQ. 0.0 .

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 348

CPBFA

 SUBROUTINE CPBFA (ABD, LDA, N, M, INFO)
 ***BEGIN PROLOGUE CPBFA
 ***PURPOSE Factor a complex Hermitian positive definite matrix stored
 in band form.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2D2
 ***TYPE COMPLEX (SPBFA-S, DPBFA-D, CPBFA-C)
 ***KEYWORDS BANDED, LINEAR ALGEBRA, LINPACK, MATRIX FACTORIZATION,
 POSITIVE DEFINITE
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 CPBFA factors a complex Hermitian positive definite matrix
 stored in band form.

 CPBFA is usually called by CPBCO, but it can be called
 directly with a saving in time if RCOND is not needed.

 On Entry

 ABD COMPLEX(LDA, N)
 the matrix to be factored. The columns of the upper
 triangle are stored in the columns of ABD and the
 diagonals of the upper triangle are stored in the
 rows of ABD . See the comments below for details.

 LDA INTEGER
 the leading dimension of the array ABD .
 LDA must be .GE. M + 1 .

 N INTEGER
 the order of the matrix A .

 M INTEGER
 the number of diagonals above the main diagonal.
 0 .LE. M .LT. N .

 On Return

 ABD an upper triangular matrix R , stored in band
 form, so that A = CTRANS(R)*R .

 INFO INTEGER
 = 0 for normal return.
 = K if the leading minor of order K is not
 positive definite.

 Band Storage

 If A is a Hermitian positive definite band matrix,
 the following program segment will set up the input.

 M = (band width above diagonal)
 DO 20 J = 1, N
 I1 = MAX(1, J-M)
 DO 10 I = I1, J

SLATEC2 (AAAAAA through D9UPAK) - 349

 K = I-J+M+1
 ABD(K,J) = A(I,J)
 10 CONTINUE
 20 CONTINUE

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CDOTC
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 350

CPBSL

 SUBROUTINE CPBSL (ABD, LDA, N, M, B)
 ***BEGIN PROLOGUE CPBSL
 ***PURPOSE Solve the complex Hermitian positive definite band system
 using the factors computed by CPBCO or CPBFA.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2D2
 ***TYPE COMPLEX (SPBSL-S, DPBSL-D, CPBSL-C)
 ***KEYWORDS BANDED, LINEAR ALGEBRA, LINPACK, MATRIX,
 POSITIVE DEFINITE, SOLVE
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 CPBSL solves the complex Hermitian positive definite band
 system A*X = B
 using the factors computed by CPBCO or CPBFA.

 On Entry

 ABD COMPLEX(LDA, N)
 the output from CPBCO or CPBFA.

 LDA INTEGER
 the leading dimension of the array ABD .

 N INTEGER
 the order of the matrix A .

 M INTEGER
 the number of diagonals above the main diagonal.

 B COMPLEX(N)
 the right hand side vector.

 On Return

 B the solution vector X .

 Error Condition

 A division by zero will occur if the input factor contains
 a zero on the diagonal. Technically this indicates
 singularity but it is usually caused by improper subroutine
 arguments. It will not occur if the subroutines are called
 correctly and INFO .EQ. 0 .

 To compute INVERSE(A) * C where C is a matrix
 with P columns
 CALL CPBCO(ABD,LDA,N,RCOND,Z,INFO)
 IF (RCOND is too small .OR. INFO .NE. 0) GO TO ...
 DO 10 J = 1, P
 CALL CPBSL(ABD,LDA,N,C(1,J))
 10 CONTINUE

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CAXPY, CDOTC

SLATEC2 (AAAAAA through D9UPAK) - 351

 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 352

CPOCO

 SUBROUTINE CPOCO (A, LDA, N, RCOND, Z, INFO)
 ***BEGIN PROLOGUE CPOCO
 ***PURPOSE Factor a complex Hermitian positive definite matrix
 and estimate the condition number of the matrix.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2D1B
 ***TYPE COMPLEX (SPOCO-S, DPOCO-D, CPOCO-C)
 ***KEYWORDS CONDITION NUMBER, LINEAR ALGEBRA, LINPACK,
 MATRIX FACTORIZATION, POSITIVE DEFINITE
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 CPOCO factors a complex Hermitian positive definite matrix
 and estimates the condition of the matrix.

 If RCOND is not needed, CPOFA is slightly faster.
 To solve A*X = B , follow CPOCO by CPOSL.
 To compute INVERSE(A)*C , follow CPOCO by CPOSL.
 To compute DETERMINANT(A) , follow CPOCO by CPODI.
 To compute INVERSE(A) , follow CPOCO by CPODI.

 On Entry

 A COMPLEX(LDA, N)
 the Hermitian matrix to be factored. Only the
 diagonal and upper triangle are used.

 LDA INTEGER
 the leading dimension of the array A .

 N INTEGER
 the order of the matrix A .

 On Return

 A an upper triangular matrix R so that A =
 CTRANS(R)*R where CTRANS(R) is the conjugate
 transpose. The strict lower triangle is unaltered.
 If INFO .NE. 0 , the factorization is not complete.

 RCOND REAL
 an estimate of the reciprocal condition of A .
 For the system A*X = B , relative perturbations
 in A and B of size EPSILON may cause
 relative perturbations in X of size EPSILON/RCOND .
 If RCOND is so small that the logical expression
 1.0 + RCOND .EQ. 1.0
 is true, then A may be singular to working
 precision. In particular, RCOND is zero if
 exact singularity is detected or the estimate
 underflows. If INFO .NE. 0 , RCOND is unchanged.

 Z COMPLEX(N)
 a work vector whose contents are usually unimportant.
 If A is close to a singular matrix, then Z is
 an approximate null vector in the sense that

SLATEC2 (AAAAAA through D9UPAK) - 353

 NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
 If INFO .NE. 0 , Z is unchanged.

 INFO INTEGER
 = 0 for normal return.
 = K signals an error condition. The leading minor
 of order K is not positive definite.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CAXPY, CDOTC, CPOFA, CSSCAL, SCASUM
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 354

CPODI

 SUBROUTINE CPODI (A, LDA, N, DET, JOB)
 ***BEGIN PROLOGUE CPODI
 ***PURPOSE Compute the determinant and inverse of a certain complex
 Hermitian positive definite matrix using the factors
 computed by CPOCO, CPOFA, or CQRDC.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2D1B, D3D1B
 ***TYPE COMPLEX (SPODI-S, DPODI-D, CPODI-C)
 ***KEYWORDS DETERMINANT, INVERSE, LINEAR ALGEBRA, LINPACK, MATRIX,
 POSITIVE DEFINITE
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 CPODI computes the determinant and inverse of a certain
 complex Hermitian positive definite matrix (see below)
 using the factors computed by CPOCO, CPOFA or CQRDC.

 On Entry

 A COMPLEX(LDA, N)
 the output A from CPOCO or CPOFA
 or the output X from CQRDC.

 LDA INTEGER
 the leading dimension of the array A .

 N INTEGER
 the order of the matrix A .

 JOB INTEGER
 = 11 both determinant and inverse.
 = 01 inverse only.
 = 10 determinant only.

 On Return

 A If CPOCO or CPOFA was used to factor A then
 CPODI produces the upper half of INVERSE(A) .
 If CQRDC was used to decompose X then
 CPODI produces the upper half of INVERSE(CTRANS(X)*X)
 where CTRANS(X) is the conjugate transpose.
 Elements of A below the diagonal are unchanged.
 If the units digit of JOB is zero, A is unchanged.

 DET REAL(2)
 determinant of A or of CTRANS(X)*X if requested.
 Otherwise not referenced.
 Determinant = DET(1) * 10.0**DET(2)
 with 1.0 .LE. DET(1) .LT. 10.0
 or DET(1) .EQ. 0.0 .

 Error Condition

 a division by zero will occur if the input factor contains
 a zero on the diagonal and the inverse is requested.
 It will not occur if the subroutines are called correctly

SLATEC2 (AAAAAA through D9UPAK) - 355

 and if CPOCO or CPOFA has set INFO .EQ. 0 .

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CAXPY, CSCAL
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 356

CPOFA

 SUBROUTINE CPOFA (A, LDA, N, INFO)
 ***BEGIN PROLOGUE CPOFA
 ***PURPOSE Factor a complex Hermitian positive definite matrix.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2D1B
 ***TYPE COMPLEX (SPOFA-S, DPOFA-D, CPOFA-C)
 ***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX FACTORIZATION,
 POSITIVE DEFINITE
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 CPOFA factors a complex Hermitian positive definite matrix.

 CPOFA is usually called by CPOCO, but it can be called
 directly with a saving in time if RCOND is not needed.
 (Time for CPOCO) = (1 + 18/N)*(Time for CPOFA) .

 On Entry

 A COMPLEX(LDA, N)
 the Hermitian matrix to be factored. Only the
 diagonal and upper triangle are used.

 LDA INTEGER
 the leading dimension of the array A .

 N INTEGER
 the order of the matrix A .

 On Return

 A an upper triangular matrix R so that A =
 CTRANS(R)*R where CTRANS(R) is the conjugate
 transpose. The strict lower triangle is unaltered.
 If INFO .NE. 0 , the factorization is not complete.

 INFO INTEGER
 = 0 for normal return.
 = K signals an error condition. The leading minor
 of order K is not positive definite.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CDOTC
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 357

CPOFS

 SUBROUTINE CPOFS (A, LDA, N, V, ITASK, IND, WORK)
 ***BEGIN PROLOGUE CPOFS
 ***PURPOSE Solve a positive definite symmetric complex system of
 linear equations.
 ***LIBRARY SLATEC
 ***CATEGORY D2D1B
 ***TYPE COMPLEX (SPOFS-S, DPOFS-D, CPOFS-C)
 ***KEYWORDS HERMITIAN, LINEAR EQUATIONS, POSITIVE DEFINITE, SYMMETRIC
 ***AUTHOR Voorhees, E. A., (LANL)
 ***DESCRIPTION

 Subroutine CPOFS solves a positive definite symmetric
 NxN system of complex linear equations using LINPACK
 subroutines CPOCO and CPOSL. That is, if A is an NxN
 complex positive definite symmetric matrix and if X and B
 are complex N-vectors, then CPOFS solves the equation

 A*X=B.

 Care should be taken not to use CPOFS with a non-Hermitian
 matrix.

 The matrix A is first factored into upper and lower tri-
 angular matrices R and R-TRANSPOSE. These factors are used to
 find the solution vector X. An approximate condition number is
 calculated to provide a rough estimate of the number of
 digits of accuracy in the computed solution.

 If the equation A*X=B is to be solved for more than one vector
 B, the factoring of a does not need to be performed again and
 the option to only solve (ITASK .GT. 1) will be faster for
 the succeeding solutions. In this case, the contents of A,
 LDA, and N must not have been altered by the user following
 factorization (ITASK=1). IND will not be changed by CPOFS
 in this case.

 Argument Description ***

 A COMPLEX(LDA,N)
 on entry, the doubly subscripted array with dimension
 (LDA,N) which contains the coefficient matrix. Only
 the upper triangle, including the diagonal, of the
 coefficient matrix need be entered and will subse-
 quently be referenced and changed by the routine.
 on return, contains in its upper triangle an upper
 triangular matrix R such that A = (R-TRANSPOSE) * R .
 LDA INTEGER
 the leading dimension of the array A. LDA must be great-
 er than or equal to N. (terminal error message IND=-1)
 N INTEGER
 the order of the matrix A. N must be greater
 than or equal to 1. (terminal error message IND=-2)
 V COMPLEX(N)
 on entry the singly subscripted array(vector) of di-
 mension N which contains the right hand side B of a
 system of simultaneous linear equations A*X=B.

SLATEC2 (AAAAAA through D9UPAK) - 358

 on return, V contains the solution vector, X .
 ITASK INTEGER
 if ITASK = 1, the matrix A is factored and then the
 linear equation is solved.
 if ITASK .GT. 1, the equation is solved using the existing
 factored matrix A.
 if ITASK .LT. 1, then terminal error message IND=-3 is
 printed.
 IND INTEGER
 GT. 0 IND is a rough estimate of the number of digits
 of accuracy in the solution, X.
 LT. 0 see error message corresponding to IND below.
 WORK COMPLEX(N)
 a singly subscripted array of dimension at least N.

 Error Messages Printed ***

 IND=-1 terminal N is greater than LDA.
 IND=-2 terminal N is less than 1.
 IND=-3 terminal ITASK is less than 1.
 IND=-4 terminal The matrix A is computationally singular or
 is not positive definite. A solution
 has not been computed.
 IND=-10 warning The solution has no apparent significance.
 The solution may be inaccurate or the
 matrix A may be poorly scaled.

 NOTE- The above terminal(*fatal*) error messages are
 designed to be handled by XERMSG in which
 LEVEL=1 (recoverable) and IFLAG=2 . LEVEL=0
 for warning error messages from XERMSG. Unless
 the user provides otherwise, an error message
 will be printed followed by an abort.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CPOCO, CPOSL, R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800516 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900510 Convert XERRWV calls to XERMSG calls, cvt GOTO's to
 IF-THEN-ELSE. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 359

CPOIR

 SUBROUTINE CPOIR (A, LDA, N, V, ITASK, IND, WORK)
 ***BEGIN PROLOGUE CPOIR
 ***PURPOSE Solve a positive definite Hermitian system of linear
 equations. Iterative refinement is used to obtain an
 error estimate.
 ***LIBRARY SLATEC
 ***CATEGORY D2D1B
 ***TYPE COMPLEX (SPOIR-S, CPOIR-C)
 ***KEYWORDS HERMITIAN, LINEAR EQUATIONS, POSITIVE DEFINITE, SYMMETRIC
 ***AUTHOR Voorhees, E. A., (LANL)
 ***DESCRIPTION

 Subroutine CPOIR solves a complex positive definite Hermitian
 NxN system of single precision linear equations using LINPACK
 subroutines CPOFA and CPOSL. One pass of iterative refine-
 ment is used only to obtain an estimate of the accuracy. That
 is, if A is an NxN complex positive definite Hermitian matrix
 and if X and B are complex N-vectors, then CPOIR solves the
 equation

 A*X=B.

 Care should be taken not to use CPOIR with a non-Hermitian
 matrix.

 The matrix A is first factored into upper and lower
 triangular matrices R and R-TRANSPOSE. These
 factors are used to calculate the solution, X.
 Then the residual vector is found and used
 to calculate an estimate of the relative error, IND.
 IND estimates the accuracy of the solution only when the
 input matrix and the right hand side are represented
 exactly in the computer and does not take into account
 any errors in the input data.

 If the equation A*X=B is to be solved for more than one vector
 B, the factoring of A does not need to be performed again and
 the option to only solve (ITASK .GT. 1) will be faster for
 the succeeding solutions. In this case, the contents of A,
 LDA, N, and WORK must not have been altered by the user
 following factorization (ITASK=1). IND will not be changed
 by CPOIR in this case.

 Argument Description ***
 A COMPLEX(LDA,N)
 the doubly subscripted array with dimension (LDA,N)
 which contains the coefficient matrix. Only the
 upper triangle, including the diagonal, of the
 coefficient matrix need be entered. A is not
 altered by the routine.
 LDA INTEGER
 the leading dimension of the array A. LDA must be great-
 er than or equal to N. (terminal error message IND=-1)
 N INTEGER
 the order of the matrix A. N must be greater than
 or equal to one. (terminal error message IND=-2)

SLATEC2 (AAAAAA through D9UPAK) - 360

 V COMPLEX(N)
 on entry, the singly subscripted array(vector) of di-
 mension N which contains the right hand side B of a
 system of simultaneous linear equations A*X=B.
 on return, V contains the solution vector, X .
 ITASK INTEGER
 if ITASK = 1, the matrix A is factored and then the
 linear equation is solved.
 if ITASK .GT. 1, the equation is solved using the existing
 factored matrix A (stored in WORK).
 if ITASK .LT. 1, then terminal terminal error IND=-3 is
 printed.
 IND INTEGER
 GT. 0 IND is a rough estimate of the number of digits
 of accuracy in the solution, X. IND=75 means
 that the solution vector X is zero.
 LT. 0 see error message corresponding to IND below.
 WORK COMPLEX(N*(N+1))
 a singly subscripted array of dimension at least N*(N+1).

 Error Messages Printed ***

 IND=-1 terminal N is greater than LDA.
 IND=-2 terminal N is less than one.
 IND=-3 terminal ITASK is less than one.
 IND=-4 terminal The matrix A is computationally singular
 or is not positive definite.
 A solution has not been computed.
 IND=-10 warning The solution has no apparent significance.
 the solution may be inaccurate or the matrix
 a may be poorly scaled.

 NOTE- the above terminal(*fatal*) error messages are
 designed to be handled by XERMSG in which
 LEVEL=1 (recoverable) and IFLAG=2 . LEVEL=0
 for warning error messages from XERMSG. Unless
 the user provides otherwise, an error message
 will be printed followed by an abort.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CCOPY, CPOFA, CPOSL, DCDOT, R1MACH, SCASUM, XERMSG
 ***REVISION HISTORY (YYMMDD)
 800530 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900510 Convert XERRWV calls to XERMSG calls, cvt GOTO's to
 IF-THEN-ELSE. (RWC)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 361

CPOSL

 SUBROUTINE CPOSL (A, LDA, N, B)
 ***BEGIN PROLOGUE CPOSL
 ***PURPOSE Solve the complex Hermitian positive definite linear system
 using the factors computed by CPOCO or CPOFA.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2D1B
 ***TYPE COMPLEX (SPOSL-S, DPOSL-D, CPOSL-C)
 ***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, POSITIVE DEFINITE, SOLVE
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 CPOSL solves the COMPLEX Hermitian positive definite system
 A * X = B
 using the factors computed by CPOCO or CPOFA.

 On Entry

 A COMPLEX(LDA, N)
 the output from CPOCO or CPOFA.

 LDA INTEGER
 the leading dimension of the array A .

 N INTEGER
 the order of the matrix A .

 B COMPLEX(N)
 the right hand side vector.

 On Return

 B the solution vector X .

 Error Condition

 A division by zero will occur if the input factor contains
 a zero on the diagonal. Technically this indicates
 singularity but it is usually caused by improper subroutine
 arguments. It will not occur if the subroutines are called
 correctly and INFO .EQ. 0 .

 To compute INVERSE(A) * C where C is a matrix
 with P columns
 CALL CPOCO(A,LDA,N,RCOND,Z,INFO)
 IF (RCOND is too small .OR. INFO .NE. 0) GO TO ...
 DO 10 J = 1, P
 CALL CPOSL(A,LDA,N,C(1,J))
 10 CONTINUE

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CAXPY, CDOTC
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2

SLATEC2 (AAAAAA through D9UPAK) - 362

 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 363

CPPCO

 SUBROUTINE CPPCO (AP, N, RCOND, Z, INFO)
 ***BEGIN PROLOGUE CPPCO
 ***PURPOSE Factor a complex Hermitian positive definite matrix stored
 in packed form and estimate the condition number of the
 matrix.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2D1B
 ***TYPE COMPLEX (SPPCO-S, DPPCO-D, CPPCO-C)
 ***KEYWORDS CONDITION NUMBER, LINEAR ALGEBRA, LINPACK,
 MATRIX FACTORIZATION, PACKED, POSITIVE DEFINITE
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 CPPCO factors a complex Hermitian positive definite matrix
 stored in packed form and estimates the condition of the matrix.

 If RCOND is not needed, CPPFA is slightly faster.
 To solve A*X = B , follow CPPCO by CPPSL.
 To compute INVERSE(A)*C , follow CPPCO by CPPSL.
 To compute DETERMINANT(A) , follow CPPCO by CPPDI.
 To compute INVERSE(A) , follow CPPCO by CPPDI.

 On Entry

 AP COMPLEX (N*(N+1)/2)
 the packed form of a Hermitian matrix A . The
 columns of the upper triangle are stored sequentially
 in a one-dimensional array of length N*(N+1)/2 .
 See comments below for details.

 N INTEGER
 the order of the matrix A .

 On Return

 AP an upper triangular matrix R , stored in packed
 form, so that A = CTRANS(R)*R .
 If INFO .NE. 0 , the factorization is not complete.

 RCOND REAL
 an estimate of the reciprocal condition of A .
 For the system A*X = B , relative perturbations
 in A and B of size EPSILON may cause
 relative perturbations in X of size EPSILON/RCOND .
 If RCOND is so small that the logical expression
 1.0 + RCOND .EQ. 1.0
 is true, then A may be singular to working
 precision. In particular, RCOND is zero if
 exact singularity is detected or the estimate
 underflows. If INFO .NE. 0 , RCOND is unchanged.

 Z COMPLEX(N)
 a work vector whose contents are usually unimportant.
 If A is singular to working precision, then Z is
 an approximate null vector in the sense that
 NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .

SLATEC2 (AAAAAA through D9UPAK) - 364

 If INFO .NE. 0 , Z is unchanged.

 INFO INTEGER
 = 0 for normal return.
 = K signals an error condition. The leading minor
 of order K is not positive definite.

 Packed Storage

 The following program segment will pack the upper
 triangle of a Hermitian matrix.

 K = 0
 DO 20 J = 1, N
 DO 10 I = 1, J
 K = K + 1
 AP(K) = A(I,J)
 10 CONTINUE
 20 CONTINUE

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CAXPY, CDOTC, CPPFA, CSSCAL, SCASUM
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 365

CPPDI

 SUBROUTINE CPPDI (AP, N, DET, JOB)
 ***BEGIN PROLOGUE CPPDI
 ***PURPOSE Compute the determinant and inverse of a complex Hermitian
 positive definite matrix using factors from CPPCO or CPPFA.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2D1B, D3D1B
 ***TYPE COMPLEX (SPPDI-S, DPPDI-D, CPPDI-C)
 ***KEYWORDS DETERMINANT, INVERSE, LINEAR ALGEBRA, LINPACK, MATRIX,
 PACKED, POSITIVE DEFINITE
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 CPPDI computes the determinant and inverse
 of a complex Hermitian positive definite matrix
 using the factors computed by CPPCO or CPPFA .

 On Entry

 AP COMPLEX (N*(N+1)/2)
 the output from CPPCO or CPPFA.

 N INTEGER
 the order of the matrix A .

 JOB INTEGER
 = 11 both determinant and inverse.
 = 01 inverse only.
 = 10 determinant only.

 On Return

 AP the upper triangular half of the inverse .
 The strict lower triangle is unaltered.

 DET REAL(2)
 determinant of original matrix if requested.
 Otherwise not referenced.
 Determinant = DET(1) * 10.0**DET(2)
 with 1.0 .LE. DET(1) .LT. 10.0
 or DET(1) .EQ. 0.0 .

 Error Condition

 A division by zero will occur if the input factor contains
 a zero on the diagonal and the inverse is requested.
 It will not occur if the subroutines are called correctly
 and if CPOCO or CPOFA has set INFO .EQ. 0 .

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CAXPY, CSCAL
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)

SLATEC2 (AAAAAA through D9UPAK) - 366

 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 367

CPPFA

 SUBROUTINE CPPFA (AP, N, INFO)
 ***BEGIN PROLOGUE CPPFA
 ***PURPOSE Factor a complex Hermitian positive definite matrix stored
 in packed form.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2D1B
 ***TYPE COMPLEX (SPPFA-S, DPPFA-D, CPPFA-C)
 ***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX FACTORIZATION, PACKED,
 POSITIVE DEFINITE
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 CPPFA factors a complex Hermitian positive definite matrix
 stored in packed form.

 CPPFA is usually called by CPPCO, but it can be called
 directly with a saving in time if RCOND is not needed.
 (Time for CPPCO) = (1 + 18/N)*(Time for CPPFA) .

 On Entry

 AP COMPLEX (N*(N+1)/2)
 the packed form of a Hermitian matrix A . The
 columns of the upper triangle are stored sequentially
 in a one-dimensional array of length N*(N+1)/2 .
 See comments below for details.

 N INTEGER
 the order of the matrix A .

 On Return

 AP an upper triangular matrix R , stored in packed
 form, so that A = CTRANS(R)*R .

 INFO INTEGER
 = 0 for normal return.
 = K If the leading minor of order K is not
 positive definite.

 Packed Storage

 The following program segment will pack the upper
 triangle of a Hermitian matrix.

 K = 0
 DO 20 J = 1, N
 DO 10 I = 1, J
 K = K + 1
 AP(K) = A(I,J)
 10 CONTINUE
 20 CONTINUE

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.

SLATEC2 (AAAAAA through D9UPAK) - 368

 ***ROUTINES CALLED CDOTC
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 369

CPPSL

 SUBROUTINE CPPSL (AP, N, B)
 ***BEGIN PROLOGUE CPPSL
 ***PURPOSE Solve the complex Hermitian positive definite system using
 the factors computed by CPPCO or CPPFA.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2D1B
 ***TYPE COMPLEX (SPPSL-S, DPPSL-D, CPPSL-C)
 ***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, PACKED,
 POSITIVE DEFINITE, SOLVE
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 CPPSL solves the complex Hermitian positive definite system
 A * X = B
 using the factors computed by CPPCO or CPPFA.

 On Entry

 AP COMPLEX (N*(N+1)/2)
 the output from CPPCO or CPPFA.

 N INTEGER
 the order of the matrix A .

 B COMPLEX(N)
 the right hand side vector.

 On Return

 B the solution vector X .

 Error Condition

 A division by zero will occur if the input factor contains
 a zero on the diagonal. Technically this indicates
 singularity but it is usually caused by improper subroutine
 arguments. It will not occur if the subroutines are called
 correctly and INFO .EQ. 0 .

 To compute INVERSE(A) * C where C is a matrix
 with P columns
 CALL CPPCO(AP,N,RCOND,Z,INFO)
 IF (RCOND is too small .OR. INFO .NE. 0) GO TO ...
 DO 10 J = 1, P
 CALL CPPSL(AP,N,C(1,J))
 10 CONTINUE

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CAXPY, CDOTC
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.

SLATEC2 (AAAAAA through D9UPAK) - 370

 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 371

CPQR79

 SUBROUTINE CPQR79 (NDEG, COEFF, ROOT, IERR, WORK)
 ***BEGIN PROLOGUE CPQR79
 ***PURPOSE Find the zeros of a polynomial with complex coefficients.
 ***LIBRARY SLATEC
 ***CATEGORY F1A1B
 ***TYPE COMPLEX (RPQR79-S, CPQR79-C)
 ***KEYWORDS COMPLEX POLYNOMIAL, POLYNOMIAL ROOTS, POLYNOMIAL ZEROS
 ***AUTHOR Vandevender, W. H., (SNLA)
 ***DESCRIPTION

 Abstract
 This routine computes all zeros of a polynomial of degree NDEG
 with complex coefficients by computing the eigenvalues of the
 companion matrix.

 Description of Parameters
 The user must dimension all arrays appearing in the call list
 COEFF(NDEG+1), ROOT(NDEG), WORK(2*NDEG*(NDEG+1))

 --Input--
 NDEG degree of polynomial

 COEFF COMPLEX coefficients in descending order. i.e.,
 P(Z)= COEFF(1)*(Z**NDEG) + COEFF(NDEG)*Z + COEFF(NDEG+1)

 WORK REAL work array of dimension at least 2*NDEG*(NDEG+1)

 --Output--
 ROOT COMPLEX vector of roots

 IERR Output Error Code
 - Normal Code
 0 means the roots were computed.
 - Abnormal Codes
 1 more than 30 QR iterations on some eigenvalue of the
 companion matrix
 2 COEFF(1)=0.0
 3 NDEG is invalid (less than or equal to 0)

 ***REFERENCES (NONE)
 ***ROUTINES CALLED COMQR, XERMSG
 ***REVISION HISTORY (YYMMDD)
 791201 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 911010 Code reworked and simplified. (RWC and WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 372

CPSI

 COMPLEX FUNCTION CPSI (ZIN)
 ***BEGIN PROLOGUE CPSI
 ***PURPOSE Compute the Psi (or Digamma) function.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C7C
 ***TYPE COMPLEX (PSI-S, DPSI-D, CPSI-C)
 ***KEYWORDS DIGAMMA FUNCTION, FNLIB, PSI FUNCTION, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 PSI(X) calculates the psi (or digamma) function of X. PSI(X)
 is the logarithmic derivative of the gamma function of X.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED CCOT, R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 780501 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900727 Added EXTERNAL statement. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 373

CPTSL

 SUBROUTINE CPTSL (N, D, E, B)
 ***BEGIN PROLOGUE CPTSL
 ***PURPOSE Solve a positive definite tridiagonal linear system.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2D2A
 ***TYPE COMPLEX (SPTSL-S, DPTSL-D, CPTSL-C)
 ***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, POSITIVE DEFINITE, SOLVE,
 TRIDIAGONAL
 ***AUTHOR Dongarra, J., (ANL)
 ***DESCRIPTION

 CPTSL given a positive definite tridiagonal matrix and a right
 hand side will find the solution.

 On Entry

 N INTEGER
 is the order of the tridiagonal matrix.

 D COMPLEX(N)
 is the diagonal of the tridiagonal matrix.
 On output D is destroyed.

 E COMPLEX(N)
 is the offdiagonal of the tridiagonal matrix.
 E(1) through E(N-1) should contain the
 offdiagonal.

 B COMPLEX(N)
 is the right hand side vector.

 On Return

 B contains the solution.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890505 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 374

CPZERO

 SUBROUTINE CPZERO (IN, A, R, T, IFLG, S)
 ***BEGIN PROLOGUE CPZERO
 ***PURPOSE Find the zeros of a polynomial with complex coefficients.
 ***LIBRARY SLATEC
 ***CATEGORY F1A1B
 ***TYPE COMPLEX (RPZERO-S, CPZERO-C)
 ***KEYWORDS POLYNOMIAL ROOTS, POLYNOMIAL ZEROS, REAL ROOTS
 ***AUTHOR Kahaner, D. K., (NBS)
 ***DESCRIPTION

 Find the zeros of the complex polynomial
 P(Z)= A(1)*Z**N + A(2)*Z**(N-1) +...+ A(N+1)

 Input...
 IN = degree of P(Z)
 A = complex vector containing coefficients of P(Z),
 A(I) = coefficient of Z**(N+1-i)
 R = N word complex vector containing initial estimates for zeros
 if these are known.
 T = 4(N+1) word array used for temporary storage
 IFLG = flag to indicate if initial estimates of
 zeros are input.
 If IFLG .EQ. 0, no estimates are input.
 If IFLG .NE. 0, the vector R contains estimates of
 the zeros
 ** WARNING ****** If estimates are input, they must
 be separated, that is, distinct or
 not repeated.
 S = an N word array

 Output...
 R(I) = Ith zero,
 S(I) = bound for R(I) .
 IFLG = error diagnostic
 Error Diagnostics...
 If IFLG .EQ. 0 on return, all is well
 If IFLG .EQ. 1 on return, A(1)=0.0 or N=0 on input
 If IFLG .EQ. 2 on return, the program failed to converge
 after 25*N iterations. Best current estimates of the
 zeros are in R(I). Error bounds are not calculated.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED CPEVL
 ***REVISION HISTORY (YYMMDD)
 810223 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 375

CQRDC

 SUBROUTINE CQRDC (X, LDX, N, P, QRAUX, JPVT, WORK, JOB)
 ***BEGIN PROLOGUE CQRDC
 ***PURPOSE Use Householder transformations to compute the QR
 factorization of an N by P matrix. Column pivoting is a
 users option.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D5
 ***TYPE COMPLEX (SQRDC-S, DQRDC-D, CQRDC-C)
 ***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, ORTHOGONAL TRIANGULAR,
 QR DECOMPOSITION
 ***AUTHOR Stewart, G. W., (U. of Maryland)
 ***DESCRIPTION

 CQRDC uses Householder transformations to compute the QR
 factorization of an N by P matrix X. Column pivoting
 based on the 2-norms of the reduced columns may be
 performed at the users option.

 On Entry

 X COMPLEX(LDX,P), where LDX .GE. N.
 X contains the matrix whose decomposition is to be
 computed.

 LDX INTEGER.
 LDX is the leading dimension of the array X.

 N INTEGER.
 N is the number of rows of the matrix X.

 P INTEGER.
 P is the number of columns of the matrix X.

 JVPT INTEGER(P).
 JVPT contains integers that control the selection
 of the pivot columns. The K-th column X(K) of X
 is placed in one of three classes according to the
 value of JVPT(K).

 If JVPT(K) .GT. 0, then X(K) is an initial
 column.

 If JVPT(K) .EQ. 0, then X(K) is a free column.

 If JVPT(K) .LT. 0, then X(K) is a final column.

 Before the decomposition is computed, initial columns
 are moved to the beginning of the array X and final
 columns to the end. Both initial and final columns
 are frozen in place during the computation and only
 free columns are moved. At the K-th stage of the
 reduction, if X(K) is occupied by a free column
 it is interchanged with the free column of largest
 reduced norm. JVPT is not referenced if
 JOB .EQ. 0.

SLATEC2 (AAAAAA through D9UPAK) - 376

 WORK COMPLEX(P).
 WORK is a work array. WORK is not referenced if
 JOB .EQ. 0.

 JOB INTEGER.
 JOB is an integer that initiates column pivoting.
 If JOB .EQ. 0, no pivoting is done.
 If JOB .NE. 0, pivoting is done.

 On Return

 X X contains in its upper triangle the upper
 triangular matrix R of the QR factorization.
 Below its diagonal X contains information from
 which the unitary part of the decomposition
 can be recovered. Note that if pivoting has
 been requested, the decomposition is not that
 of the original matrix X but that of X
 with its columns permuted as described by JVPT.

 QRAUX COMPLEX(P).
 QRAUX contains further information required to recover
 the unitary part of the decomposition.

 JVPT JVPT(K) contains the index of the column of the
 original matrix that has been interchanged into
 the K-th column, if pivoting was requested.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CAXPY, CDOTC, CSCAL, CSWAP, SCNRM2
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 377

CQRSL

 SUBROUTINE CQRSL (X, LDX, N, K, QRAUX, Y, QY, QTY, B, RSD, XB,
 + JOB, INFO)
 ***BEGIN PROLOGUE CQRSL
 ***PURPOSE Apply the output of CQRDC to compute coordinate transfor-
 mations, projections, and least squares solutions.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D9, D2C1
 ***TYPE COMPLEX (SQRSL-S, DQRSL-D, CQRSL-C)
 ***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, ORTHOGONAL TRIANGULAR,
 SOLVE
 ***AUTHOR Stewart, G. W., (U. of Maryland)
 ***DESCRIPTION

 CQRSL applies the output of CQRDC to compute coordinate
 transformations, projections, and least squares solutions.
 For K .LE. MIN(N,P), let XK be the matrix

 XK = (X(JVPT(1)),X(JVPT(2)), ... ,X(JVPT(K)))

 formed from columns JVPT(1), ... ,JVPT(K) of the original
 N x P matrix X that was input to CQRDC (if no pivoting was
 done, XK consists of the first K columns of X in their
 original order). CQRDC produces a factored unitary matrix Q
 and an upper triangular matrix R such that

 XK = Q * (R)
 (0)

 This information is contained in coded form in the arrays
 X and QRAUX.

 On Entry

 X COMPLEX(LDX,P).
 X contains the output of CQRDC.

 LDX INTEGER.
 LDX is the leading dimension of the array X.

 N INTEGER.
 N is the number of rows of the matrix XK. It must
 have the same value as N in CQRDC.

 K INTEGER.
 K is the number of columns of the matrix XK. K
 must not be greater than (N,P), where P is the
 same as in the calling sequence to CQRDC.

 QRAUX COMPLEX(P).
 QRAUX contains the auxiliary output from CQRDC.

 Y COMPLEX(N)
 Y contains an N-vector that is to be manipulated
 by CQRSL.

 JOB INTEGER.

SLATEC2 (AAAAAA through D9UPAK) - 378

 JOB specifies what is to be computed. JOB has
 the decimal expansion ABCDE, with the following
 meaning.

 If A .NE. 0, compute QY.
 If B,C,D, or E .NE. 0, compute QTY.
 If C .NE. 0, compute B.
 If D .NE. 0, compute RSD .
 If E .NE. 0, compute XB.

 Note that a request to compute B, RSD, or XB
 automatically triggers the computation of QTY, for
 which an array must be provided in the calling
 sequence.

 On Return

 QY COMPLEX(N).
 QY contains Q*Y, if its computation has been
 requested.

 QTY COMPLEX(N).
 QTY contains CTRANS(Q)*Y, if its computation has
 been requested. Here CTRANS(Q) is the conjugate
 transpose of the matrix Q.

 B COMPLEX(K)
 B contains the solution of the least squares problem

 minimize NORM2(Y - XK*B),

 if its computation has been requested. (Note that
 if pivoting was requested in CQRDC, the J-th
 component of B will be associated with column JVPT(J)
 of the original matrix X that was input into CQRDC.)

 RSD COMPLEX(N).
 RSD contains the least squares residual Y - XK*B,
 if its computation has been requested. RSD is
 also the orthogonal projection of Y onto the
 orthogonal complement of the column space of XK.

 XB COMPLEX(N).
 XB contains the least squares approximation XK*B,
 if its computation has been requested. XB is also
 the orthogonal projection of Y onto the column space
 of X.

 INFO INTEGER.
 INFO is zero unless the computation of B has
 been requested and R is exactly singular. In
 this case, INFO is the index of the first zero
 diagonal element of R and B is left unaltered.

 The parameters QY, QTY, B, RSD, and XB are not referenced
 if their computation is not requested and in this case
 can be replaced by dummy variables in the calling program.
 To save storage, the user may in some cases use the same
 array for different parameters in the calling sequence. A
 frequently occurring example is when one wishes to compute

SLATEC2 (AAAAAA through D9UPAK) - 379

 any of B, RSD, or XB and does not need Y or QTY. In this
 case one may identify Y, QTY, and one of B, RSD, or XB, while
 providing separate arrays for anything else that is to be
 computed. Thus the calling sequence

 CALL CQRSL(X,LDX,N,K,QRAUX,Y,DUM,Y,B,Y,DUM,110,INFO)

 will result in the computation of B and RSD, with RSD
 overwriting Y. More generally, each item in the following
 list contains groups of permissible identifications for
 a single calling sequence.

 1. (Y,QTY,B) (RSD) (XB) (QY)

 2. (Y,QTY,RSD) (B) (XB) (QY)

 3. (Y,QTY,XB) (B) (RSD) (QY)

 4. (Y,QY) (QTY,B) (RSD) (XB)

 5. (Y,QY) (QTY,RSD) (B) (XB)

 6. (Y,QY) (QTY,XB) (B) (RSD)

 In any group the value returned in the array allocated to
 the group corresponds to the last member of the group.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CAXPY, CCOPY, CDOTC
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 380

CROTG

 SUBROUTINE CROTG (CA, CB, C, S)
 ***BEGIN PROLOGUE CROTG
 ***PURPOSE Construct a Givens transformation.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B10
 ***TYPE COMPLEX (SROTG-S, DROTG-D, CROTG-C)
 ***KEYWORDS BLAS, GIVENS ROTATION, GIVENS TRANSFORMATION,
 LINEAR ALGEBRA, VECTOR
 ***AUTHOR (UNKNOWN)
 ***DESCRIPTION

 Complex Givens transformation

 Construct the Givens transformation

 (C S)
 G = (), C**2 + ABS(S)**2 =1,
 (-S C)

 which zeros the second entry of the complex 2-vector (CA,CB)**T

 The quantity CA/ABS(CA)*NORM(CA,CB) overwrites CA in storage.

 Input:
 CA (Complex)
 CB (Complex)

 Output:
 CA (Complex) CA/ABS(CA)*NORM(CA,CB)
 C (Real)
 S (Complex)

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 790101 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 381

CSCAL

 SUBROUTINE CSCAL (N, CA, CX, INCX)
 ***BEGIN PROLOGUE CSCAL
 ***PURPOSE Multiply a vector by a constant.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1A6
 ***TYPE COMPLEX (SSCAL-S, DSCAL-D, CSCAL-C)
 ***KEYWORDS BLAS, LINEAR ALGEBRA, SCALE, VECTOR
 ***AUTHOR Lawson, C. L., (JPL)
 Hanson, R. J., (SNLA)
 Kincaid, D. R., (U. of Texas)
 Krogh, F. T., (JPL)
 ***DESCRIPTION

 B L A S Subprogram
 Description of Parameters

 --Input--
 N number of elements in input vector(s)
 CA complex scale factor
 CX complex vector with N elements
 INCX storage spacing between elements of CX

 --Output--
 CX complex result (unchanged if N .LE. 0)

 Replace complex CX by complex CA*CX.
 For I = 0 to N-1, replace CX(IX+I*INCX) with CA*CX(IX+I*INCX),
 where IX = 1 if INCX .GE. 0, else IX = 1+(1-N)*INCX.

 ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
 Krogh, Basic linear algebra subprograms for Fortran
 usage, Algorithm No. 539, Transactions on Mathematical
 Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 791001 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900821 Modified to correct problem with a negative increment.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 382

CSEVL

 FUNCTION CSEVL (X, CS, N)
 ***BEGIN PROLOGUE CSEVL
 ***PURPOSE Evaluate a Chebyshev series.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C3A2
 ***TYPE SINGLE PRECISION (CSEVL-S, DCSEVL-D)
 ***KEYWORDS CHEBYSHEV SERIES, FNLIB, SPECIAL FUNCTIONS
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 Evaluate the N-term Chebyshev series CS at X. Adapted from
 a method presented in the paper by Broucke referenced below.

 Input Arguments --
 X value at which the series is to be evaluated.
 CS array of N terms of a Chebyshev series. In evaluating
 CS, only half the first coefficient is summed.
 N number of terms in array CS.

 ***REFERENCES R. Broucke, Ten subroutines for the manipulation of
 Chebyshev series, Algorithm 446, Communications of
 the A.C.M. 16, (1973) pp. 254-256.
 L. Fox and I. B. Parker, Chebyshev Polynomials in
 Numerical Analysis, Oxford University Press, 1968,
 page 56.
 ***ROUTINES CALLED R1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770401 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900329 Prologued revised extensively and code rewritten to allow
 X to be slightly outside interval (-1,+1). (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 383

CSICO

 SUBROUTINE CSICO (A, LDA, N, KPVT, RCOND, Z)
 ***BEGIN PROLOGUE CSICO
 ***PURPOSE Factor a complex symmetric matrix by elimination with
 symmetric pivoting and estimate the condition number of the
 matrix.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2C1
 ***TYPE COMPLEX (SSICO-S, DSICO-D, CHICO-C, CSICO-C)
 ***KEYWORDS CONDITION NUMBER, LINEAR ALGEBRA, LINPACK,
 MATRIX FACTORIZATION, SYMMETRIC
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 CSICO factors a complex symmetric matrix by elimination with
 symmetric pivoting and estimates the condition of the matrix.

 If RCOND is not needed, CSIFA is slightly faster.
 To solve A*X = B , follow CSICO by CSISL.
 To compute INVERSE(A)*C , follow CSICO by CSISL.
 To compute INVERSE(A) , follow CSICO by CSIDI.
 To compute DETERMINANT(A) , follow CSICO by CSIDI.

 On Entry

 A COMPLEX(LDA, N)
 the symmetric matrix to be factored.
 Only the diagonal and upper triangle are used.

 LDA INTEGER
 the leading dimension of the array A .

 N INTEGER
 the order of the matrix A .

 On Return

 A a block diagonal matrix and the multipliers which
 were used to obtain it.
 The factorization can be written A = U*D*TRANS(U)
 where U is a product of permutation and unit
 upper triangular matrices , TRANS(U) is the
 transpose of U , and D is block diagonal
 with 1 by 1 and 2 by 2 blocks.

 KVPT INTEGER(N)
 an integer vector of pivot indices.

 RCOND REAL
 an estimate of the reciprocal condition of A .
 For the system A*X = B , relative perturbations
 in A and B of size EPSILON may cause
 relative perturbations in X of size EPSILON/RCOND .
 If RCOND is so small that the logical expression
 1.0 + RCOND .EQ. 1.0
 is true, then A may be singular to working
 precision. In particular, RCOND is zero if

SLATEC2 (AAAAAA through D9UPAK) - 384

 exact singularity is detected or the estimate
 underflows.

 Z COMPLEX(N)
 a work vector whose contents are usually unimportant.
 If A is close to a singular matrix, then Z is
 an approximate null vector in the sense that
 NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CAXPY, CDOTU, CSIFA, CSSCAL, SCASUM
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 891107 Corrected category and modified routine equivalence
 list. (WRB)
 891107 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 385

CSIDI

 SUBROUTINE CSIDI (A, LDA, N, KPVT, DET, WORK, JOB)
 ***BEGIN PROLOGUE CSIDI
 ***PURPOSE Compute the determinant and inverse of a complex symmetric
 matrix using the factors from CSIFA.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2C1, D3C1
 ***TYPE COMPLEX (SSIDI-S, DSIDI-D, CHIDI-C, CSIDI-C)
 ***KEYWORDS DETERMINANT, INVERSE, LINEAR ALGEBRA, LINPACK, MATRIX,
 SYMMETRIC
 ***AUTHOR Bunch, J., (UCSD)
 ***DESCRIPTION

 CSIDI computes the determinant and inverse
 of a complex symmetric matrix using the factors from CSIFA.

 On Entry

 A COMPLEX(LDA,N)
 the output from CSIFA.

 LDA INTEGER
 the leading dimension of the array A .

 N INTEGER
 the order of the matrix A .

 KVPT INTEGER(N)
 the pivot vector from CSIFA.

 WORK COMPLEX(N)
 work vector. Contents destroyed.

 JOB INTEGER
 JOB has the decimal expansion AB where
 If B .NE. 0, the inverse is computed,
 If A .NE. 0, the determinant is computed,

 For example, JOB = 11 gives both.

 On Return

 Variables not requested by JOB are not used.

 A contains the upper triangle of the inverse of
 the original matrix. The strict lower triangle
 is never referenced.

 DET COMPLEX(2)
 determinant of original matrix.
 Determinant = DET(1) * 10.0**DET(2)
 with 1.0 .LE. ABS(DET(1)) .LT. 10.0
 or DET(1) = 0.0.

 Error Condition

 A division by zero may occur if the inverse is requested

SLATEC2 (AAAAAA through D9UPAK) - 386

 and CSICO has set RCOND .EQ. 0.0
 or CSIFA has set INFO .NE. 0 .

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CAXPY, CCOPY, CDOTU, CSWAP
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 891107 Corrected category and modified routine equivalence
 list. (WRB)
 891107 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 387

CSIFA

 SUBROUTINE CSIFA (A, LDA, N, KPVT, INFO)
 ***BEGIN PROLOGUE CSIFA
 ***PURPOSE Factor a complex symmetric matrix by elimination with
 symmetric pivoting.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2C1
 ***TYPE COMPLEX (SSIFA-S, DSIFA-D, CHIFA-C, CSIFA-C)
 ***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX FACTORIZATION, SYMMETRIC
 ***AUTHOR Bunch, J., (UCSD)
 ***DESCRIPTION

 CSIFA factors a complex symmetric matrix by elimination
 with symmetric pivoting.

 To solve A*X = B , follow CSIFA by CSISL.
 To compute INVERSE(A)*C , follow CSIFA by CSISL.
 To compute DETERMINANT(A) , follow CSIFA by CSIDI.
 To compute INVERSE(A) , follow CSIFA by CSIDI.

 On Entry

 A COMPLEX(LDA,N)
 the symmetric matrix to be factored.
 Only the diagonal and upper triangle are used.

 LDA INTEGER
 the leading dimension of the array A .

 N INTEGER
 the order of the matrix A .

 On Return

 A a block diagonal matrix and the multipliers which
 were used to obtain it.
 The factorization can be written A = U*D*TRANS(U)
 where U is a product of permutation and unit
 upper triangular matrices , TRANS(U) is the
 transpose of U , and D is block diagonal
 with 1 by 1 and 2 by 2 blocks.

 KVPT INTEGER(N)
 an integer vector of pivot indices.

 INFO INTEGER
 = 0 normal value.
 = K if the K-th pivot block is singular. This is
 not an error condition for this subroutine,
 but it does indicate that CSISL or CSIDI may
 divide by zero if called.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CAXPY, CSWAP, ICAMAX
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN

SLATEC2 (AAAAAA through D9UPAK) - 388

 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 891107 Corrected category and modified routine equivalence
 list. (WRB)
 891107 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 389

CSINH

 COMPLEX FUNCTION CSINH (Z)
 ***BEGIN PROLOGUE CSINH
 ***PURPOSE Compute the complex hyperbolic sine.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C4C
 ***TYPE COMPLEX (CSINH-C)
 ***KEYWORDS ELEMENTARY FUNCTIONS, FNLIB, HYPERBOLIC SINE
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 CSINH(Z) calculates the complex hyperbolic sine of complex
 argument Z. Z is in units of radians.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 770401 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 390

CSISL

 SUBROUTINE CSISL (A, LDA, N, KPVT, B)
 ***BEGIN PROLOGUE CSISL
 ***PURPOSE Solve a complex symmetric system using the factors obtained
 from CSIFA.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2C1
 ***TYPE COMPLEX (SSISL-S, DSISL-D, CHISL-C, CSISL-C)
 ***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, SOLVE, SYMMETRIC
 ***AUTHOR Bunch, J., (UCSD)
 ***DESCRIPTION

 CSISL solves the complex symmetric system
 A * X = B
 using the factors computed by CSIFA.

 On Entry

 A COMPLEX(LDA,N)
 the output from CSIFA.

 LDA INTEGER
 the leading dimension of the array A .

 N INTEGER
 the order of the matrix A .

 KVPT INTEGER(N)
 the pivot vector from CSIFA.

 B COMPLEX(N)
 the right hand side vector.

 On Return

 B the solution vector X .

 Error Condition

 A division by zero may occur if CSICO has set RCOND .EQ. 0.0
 or CSIFA has set INFO .NE. 0 .

 To compute INVERSE(A) * C where C is a matrix
 with P columns
 CALL CSIFA(A,LDA,N,KVPT,INFO)
 If (INFO .NE. 0) GO TO ...
 DO 10 J = 1, P
 CALL CSISL(A,LDA,N,KVPT,C(1,j))
 10 CONTINUE

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CAXPY, CDOTU
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)

SLATEC2 (AAAAAA through D9UPAK) - 391

 891107 Corrected category and modified routine equivalence
 list. (WRB)
 891107 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 392

CSPCO

 SUBROUTINE CSPCO (AP, N, KPVT, RCOND, Z)
 ***BEGIN PROLOGUE CSPCO
 ***PURPOSE Factor a complex symmetric matrix stored in packed form
 by elimination with symmetric pivoting and estimate the
 condition number of the matrix.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2C1
 ***TYPE COMPLEX (SSPCO-S, DSPCO-D, CHPCO-C, CSPCO-C)
 ***KEYWORDS CONDITION NUMBER, LINEAR ALGEBRA, LINPACK,
 MATRIX FACTORIZATION, PACKED, SYMMETRIC
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 CSPCO factors a complex symmetric matrix stored in packed
 form by elimination with symmetric pivoting and estimates
 the condition of the matrix.

 If RCOND is not needed, CSPFA is slightly faster.
 To solve A*X = B , follow CSPCO by CSPSL.
 To compute INVERSE(A)*C , follow CSPCO by CSPSL.
 To compute INVERSE(A) , follow CSPCO by CSPDI.
 To compute DETERMINANT(A) , follow CSPCO by CSPDI.

 On Entry

 AP COMPLEX (N*(N+1)/2)
 the packed form of a symmetric matrix A . The
 columns of the upper triangle are stored sequentially
 in a one-dimensional array of length N*(N+1)/2 .
 See comments below for details.

 N INTEGER
 the order of the matrix A .

 On Return

 AP a block diagonal matrix and the multipliers which
 were used to obtain it stored in packed form.
 The factorization can be written A = U*D*TRANS(U)
 where U is a product of permutation and unit
 upper triangular matrices , TRANS(U) is the
 transpose of U , and D is block diagonal
 with 1 by 1 and 2 by 2 blocks.

 KVPT INTEGER(N)
 an integer vector of pivot indices.

 RCOND REAL
 an estimate of the reciprocal condition of A .
 For the system A*X = B , relative perturbations
 in A and B of size EPSILON may cause
 relative perturbations in X of size EPSILON/RCOND .
 If RCOND is so small that the logical expression
 1.0 + RCOND .EQ. 1.0
 is true, then A may be singular to working
 precision. In particular, RCOND is zero if

SLATEC2 (AAAAAA through D9UPAK) - 393

 exact singularity is detected or the estimate
 underflows.

 Z COMPLEX(N)
 a work vector whose contents are usually unimportant.
 If A is close to a singular matrix, then Z is
 an approximate null vector in the sense that
 NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .

 Packed Storage

 The following program segment will pack the upper
 triangle of a symmetric matrix.

 K = 0
 DO 20 J = 1, N
 DO 10 I = 1, J
 K = K + 1
 AP(K) = A(I,J)
 10 CONTINUE
 20 CONTINUE

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CAXPY, CDOTU, CSPFA, CSSCAL, SCASUM
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 891107 Corrected category and modified routine equivalence
 list. (WRB)
 891107 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 394

CSPDI

 SUBROUTINE CSPDI (AP, N, KPVT, DET, WORK, JOB)
 ***BEGIN PROLOGUE CSPDI
 ***PURPOSE Compute the determinant and inverse of a complex symmetric
 matrix stored in packed form using the factors from CSPFA.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2C1, D3C1
 ***TYPE COMPLEX (SSPDI-S, DSPDI-D, CHPDI-C, CSPDI-C)
 ***KEYWORDS DETERMINANT, INVERSE, LINEAR ALGEBRA, LINPACK, MATRIX,
 PACKED, SYMMETRIC
 ***AUTHOR Bunch, J., (UCSD)
 ***DESCRIPTION

 CSPDI computes the determinant and inverse
 of a complex symmetric matrix using the factors from CSPFA,
 where the matrix is stored in packed form.

 On Entry

 AP COMPLEX (N*(N+1)/2)
 the output from CSPFA.

 N INTEGER
 the order of the matrix A .

 KVPT INTEGER(N)
 the pivot vector from CSPFA.

 WORK COMPLEX(N)
 work vector. Contents ignored.

 JOB INTEGER
 JOB has the decimal expansion AB where
 if B .NE. 0, the inverse is computed,
 if A .NE. 0, the determinant is computed.

 For example, JOB = 11 gives both.

 On Return

 Variables not requested by JOB are not used.

 AP contains the upper triangle of the inverse of
 the original matrix, stored in packed form.
 The columns of the upper triangle are stored
 sequentially in a one-dimensional array.

 DET COMPLEX(2)
 determinant of original matrix.
 Determinant = DET(1) * 10.0**DET(2)
 with 1.0 .LE. ABS(DET(1)) .LT. 10.0
 or DET(1) = 0.0.

 Error Condition

 A division by zero will occur if the inverse is requested
 and CSPCO has set RCOND .EQ. 0.0

SLATEC2 (AAAAAA through D9UPAK) - 395

 or CSPFA has set INFO .NE. 0 .

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CAXPY, CCOPY, CDOTU, CSWAP
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 891107 Corrected category and modified routine equivalence
 list. (WRB)
 891107 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 396

CSPFA

 SUBROUTINE CSPFA (AP, N, KPVT, INFO)
 ***BEGIN PROLOGUE CSPFA
 ***PURPOSE Factor a complex symmetric matrix stored in packed form by
 elimination with symmetric pivoting.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2C1
 ***TYPE COMPLEX (SSPFA-S, DSPFA-D, CHPFA-C, CSPFA-C)
 ***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX FACTORIZATION, PACKED,
 SYMMETRIC
 ***AUTHOR Bunch, J., (UCSD)
 ***DESCRIPTION

 CSPFA factors a complex symmetric matrix stored in
 packed form by elimination with symmetric pivoting.

 To solve A*X = B , follow CSPFA by CSPSL.
 To compute INVERSE(A)*C , follow CSPFA by CSPSL.
 To compute DETERMINANT(A) , follow CSPFA by CSPDI.
 To compute INVERSE(A) , follow CSPFA by CSPDI.

 On Entry

 AP COMPLEX (N*(N+1)/2)
 the packed form of a symmetric matrix A . The
 columns of the upper triangle are stored sequentially
 in a one-dimensional array of length N*(N+1)/2 .
 See comments below for details.

 N INTEGER
 the order of the matrix A .

 On Return

 AP a block diagonal matrix and the multipliers which
 were used to obtain it stored in packed form.
 The factorization can be written A = U*D*TRANS(U)
 where U is a product of permutation and unit
 upper triangular matrices , TRANS(U) is the
 transpose of U , and D is block diagonal
 with 1 by 1 and 2 by 2 blocks.

 KVPT INTEGER(N)
 an integer vector of pivot indices.

 INFO INTEGER
 = 0 normal value.
 = K if the K-th pivot block is singular. This is
 not an error condition for this subroutine,
 but it does indicate that CSPSL or CSPDI may
 divide by zero if called.

 Packed Storage

 The following program segment will pack the upper
 triangle of a symmetric matrix.

SLATEC2 (AAAAAA through D9UPAK) - 397

 K = 0
 DO 20 J = 1, N
 DO 10 I = 1, J
 K = K + 1
 AP(K) = A(I,J)
 10 CONTINUE
 20 CONTINUE

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CAXPY, CSWAP, ICAMAX
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 891107 Corrected category and modified routine equivalence
 list. (WRB)
 891107 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 398

CSPSL

 SUBROUTINE CSPSL (AP, N, KPVT, B)
 ***BEGIN PROLOGUE CSPSL
 ***PURPOSE Solve a complex symmetric system using the factors obtained
 from CSPFA.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2C1
 ***TYPE COMPLEX (SSPSL-S, DSPSL-D, CHPSL-C, CSPSL-C)
 ***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, PACKED, SOLVE, SYMMETRIC
 ***AUTHOR Bunch, J., (UCSD)
 ***DESCRIPTION

 CSISL solves the complex symmetric system
 A * X = B
 using the factors computed by CSPFA.

 On Entry

 AP COMPLEX(N*(N+1)/2)
 the output from CSPFA.

 N INTEGER
 the order of the matrix A .

 KVPT INTEGER(N)
 the pivot vector from CSPFA.

 B COMPLEX(N)
 the right hand side vector.

 On Return

 B the solution vector X .

 Error Condition

 A division by zero may occur if CSPCO has set RCOND .EQ. 0.0
 or CSPFA has set INFO .NE. 0 .

 To compute INVERSE(A) * C where C is a matrix
 with P columns
 CALL CSPFA(AP,N,KVPT,INFO)
 IF (INFO .NE. 0) GO TO ...
 DO 10 J = 1, P
 CALL CSPSL(AP,N,KVPT,C(1,J))
 10 CONTINUE

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CAXPY, CDOTU
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 891107 Corrected category and modified routine equivalence
 list. (WRB)
 891107 REVISION DATE from Version 3.2

SLATEC2 (AAAAAA through D9UPAK) - 399

 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 400

CSROT

 SUBROUTINE CSROT (N, CX, INCX, CY, INCY, C, S)
 ***BEGIN PROLOGUE CSROT
 ***PURPOSE Apply a plane Givens rotation.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B10
 ***TYPE COMPLEX (SROT-S, DROT-D, CSROT-C)
 ***KEYWORDS BLAS, GIVENS ROTATION, GIVENS TRANSFORMATION,
 LINEAR ALGEBRA, PLANE ROTATION, VECTOR
 ***AUTHOR Dongarra, J., (ANL)
 ***DESCRIPTION

 CSROT applies the complex Givens rotation

 (X) (C S)(X)
 (Y) = (-S C)(Y)

 N times where for I = 0,...,N-1

 X = CX(LX+I*INCX)
 Y = CY(LY+I*INCY),

 where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is
 defined in a similar way using INCY.

 Argument Description

 N (integer) number of elements in each vector

 CX (complex array) beginning of one vector

 INCX (integer) memory spacing of successive elements
 of vector CX

 CY (complex array) beginning of the other vector

 INCY (integer) memory spacing of successive elements
 of vector CY

 C (real) cosine term of the rotation

 S (real) sine term of the rotation.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 810223 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920310 Corrected definition of LX in DESCRIPTION. (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 401

CSSCAL

 SUBROUTINE CSSCAL (N, SA, CX, INCX)
 ***BEGIN PROLOGUE CSSCAL
 ***PURPOSE Scale a complex vector.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1A6
 ***TYPE COMPLEX (CSSCAL-C)
 ***KEYWORDS BLAS, LINEAR ALGEBRA, SCALE, VECTOR
 ***AUTHOR Lawson, C. L., (JPL)
 Hanson, R. J., (SNLA)
 Kincaid, D. R., (U. of Texas)
 Krogh, F. T., (JPL)
 ***DESCRIPTION

 B L A S Subprogram
 Description of Parameters

 --Input--
 N number of elements in input vector(s)
 SA single precision scale factor
 CX complex vector with N elements
 INCX storage spacing between elements of CX

 --Output--
 CX scaled result (unchanged if N .LE. 0)

 Replace complex CX by (single precision SA) * (complex CX)
 For I = 0 to N-1, replace CX(IX+I*INCX) with SA * CX(IX+I*INCX),
 where IX = 1 if INCX .GE. 0, else IX = 1+(1-N)*INCX.

 ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
 Krogh, Basic linear algebra subprograms for Fortran
 usage, Algorithm No. 539, Transactions on Mathematical
 Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 791001 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900821 Modified to correct problem with a negative increment.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 402

CSVDC

 SUBROUTINE CSVDC (X, LDX, N, P, S, E, U, LDU, V, LDV, WORK, JOB,
 + INFO)
 ***BEGIN PROLOGUE CSVDC
 ***PURPOSE Perform the singular value decomposition of a rectangular
 matrix.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D6
 ***TYPE COMPLEX (SSVDC-S, DSVDC-D, CSVDC-C)
 ***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX,
 SINGULAR VALUE DECOMPOSITION
 ***AUTHOR Stewart, G. W., (U. of Maryland)
 ***DESCRIPTION

 CSVDC is a subroutine to reduce a complex NxP matrix X by
 unitary transformations U and V to diagonal form. The
 diagonal elements S(I) are the singular values of X. The
 columns of U are the corresponding left singular vectors,
 and the columns of V the right singular vectors.

 On Entry

 X COMPLEX(LDX,P), where LDX .GE. N.
 X contains the matrix whose singular value
 decomposition is to be computed. X is
 destroyed by CSVDC.

 LDX INTEGER.
 LDX is the leading dimension of the array X.

 N INTEGER.
 N is the number of rows of the matrix X.

 P INTEGER.
 P is the number of columns of the matrix X.

 LDU INTEGER.
 LDU is the leading dimension of the array U
 (see below).

 LDV INTEGER.
 LDV is the leading dimension of the array V
 (see below).

 WORK COMPLEX(N).
 WORK is a scratch array.

 JOB INTEGER.
 JOB controls the computation of the singular
 vectors. It has the decimal expansion AB
 with the following meaning

 A .EQ. 0 Do not compute the left singular
 vectors.
 A .EQ. 1 Return the N left singular vectors
 in U.
 A .GE. 2 Return the first MIN(N,P)

SLATEC2 (AAAAAA through D9UPAK) - 403

 left singular vectors in U.
 B .EQ. 0 Do not compute the right singular
 vectors.
 B .EQ. 1 Return the right singular vectors
 in V.

 On Return

 S COMPLEX(MM), where MM = MIN(N+1,P).
 The first MIN(N,P) entries of S contain the
 singular values of X arranged in descending
 order of magnitude.

 E COMPLEX(P).
 E ordinarily contains zeros. However see the
 discussion of INFO for exceptions.

 U COMPLEX(LDU,K), where LDU .GE. N. If JOBA .EQ. 1
 then K .EQ. N. If JOBA .GE. 2 then
 K .EQ. MIN(N,P).
 U contains the matrix of right singular vectors.
 U is not referenced if JOBA .EQ. 0. If N .LE. P
 or if JOBA .GT. 2, then U may be identified with X
 in the subroutine call.

 V COMPLEX(LDV,P), where LDV .GE. P.
 V contains the matrix of right singular vectors.
 V is not referenced if JOB .EQ. 0. If P .LE. N,
 then V may be identified with X in the
 subroutine call.

 INFO INTEGER.
 The singular values (and their corresponding
 singular vectors) S(INFO+1),S(INFO+2),...,S(M)
 are correct (here M=MIN(N,P)). Thus if
 INFO.EQ. 0, all the singular values and their
 vectors are correct. In any event, the matrix
 B = CTRANS(U)*X*V is the bidiagonal matrix
 with the elements of S on its diagonal and the
 elements of E on its super-diagonal (CTRANS(U)
 is the conjugate-transpose of U). Thus the
 singular values of X and B are the same.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CAXPY, CDOTC, CSCAL, CSROT, CSWAP, SCNRM2, SROTG
 ***REVISION HISTORY (YYMMDD)
 790319 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 404

CSWAP

 SUBROUTINE CSWAP (N, CX, INCX, CY, INCY)
 ***BEGIN PROLOGUE CSWAP
 ***PURPOSE Interchange two vectors.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1A5
 ***TYPE COMPLEX (SSWAP-S, DSWAP-D, CSWAP-C, ISWAP-I)
 ***KEYWORDS BLAS, INTERCHANGE, LINEAR ALGEBRA, VECTOR
 ***AUTHOR Lawson, C. L., (JPL)
 Hanson, R. J., (SNLA)
 Kincaid, D. R., (U. of Texas)
 Krogh, F. T., (JPL)
 ***DESCRIPTION

 B L A S Subprogram
 Description of Parameters

 --Input--
 N number of elements in input vector(s)
 CX complex vector with N elements
 INCX storage spacing between elements of CX
 CY complex vector with N elements
 INCY storage spacing between elements of CY

 --Output--
 CX input vector CY (unchanged if N .LE. 0)
 CY input vector CX (unchanged if N .LE. 0)

 Interchange complex CX and complex CY
 For I = 0 to N-1, interchange CX(LX+I*INCX) and CY(LY+I*INCY),
 where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is
 defined in a similar way using INCY.

 ***REFERENCES C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
 Krogh, Basic linear algebra subprograms for Fortran
 usage, Algorithm No. 539, Transactions on Mathematical
 Software 5, 3 (September 1979), pp. 308-323.
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 791001 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920310 Corrected definition of LX in DESCRIPTION. (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 405

CSYMM

 SUBROUTINE CSYMM (SIDE, UPLO, M, N, ALPHA, A, LDA, B, LBD, BETA,
 $ C, LDC)
 ***BEGIN PROLOGUE CSYMM
 ***PURPOSE Multiply a complex general matrix by a complex symmetric
 matrix.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B6
 ***TYPE COMPLEX (SSYMM-S, DSYMM-D, CSYMM-C)
 ***KEYWORDS LEVEL 3 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J., (ANL)
 Duff, I., (AERE)
 Du Croz, J., (NAG)
 Hammarling, S. (NAG)
 ***DESCRIPTION

 CSYMM performs one of the matrix-matrix operations

 C := alpha*A*B + beta*C,

 or

 C := alpha*B*A + beta*C,

 where alpha and beta are scalars, A is a symmetric matrix and B and
 C are m by n matrices.

 Parameters
 ==========

 SIDE - CHARACTER*1.
 On entry, SIDE specifies whether the symmetric matrix A
 appears on the left or right in the operation as follows:

 SIDE = 'L' or 'l' C := alpha*A*B + beta*C,

 SIDE = 'R' or 'r' C := alpha*B*A + beta*C,

 Unchanged on exit.

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the upper or lower
 triangular part of the symmetric matrix A is to be
 referenced as follows:

 UPLO = 'U' or 'u' Only the upper triangular part of the
 symmetric matrix is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular part of the
 symmetric matrix is to be referenced.

 Unchanged on exit.

 M - INTEGER.
 On entry, M specifies the number of rows of the matrix C.
 M must be at least zero.
 Unchanged on exit.

SLATEC2 (AAAAAA through D9UPAK) - 406

 N - INTEGER.
 On entry, N specifies the number of columns of the matrix C.
 N must be at least zero.
 Unchanged on exit.

 ALPHA - COMPLEX .
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A - COMPLEX array of DIMENSION (LDA, ka), where ka is
 m when SIDE = 'L' or 'l' and is n otherwise.
 Before entry with SIDE = 'L' or 'l', the m by m part of
 the array A must contain the symmetric matrix, such that
 when UPLO = 'U' or 'u', the leading m by m upper triangular
 part of the array A must contain the upper triangular part
 of the symmetric matrix and the strictly lower triangular
 part of A is not referenced, and when UPLO = 'L' or 'l',
 the leading m by m lower triangular part of the array A
 must contain the lower triangular part of the symmetric
 matrix and the strictly upper triangular part of A is not
 referenced.
 Before entry with SIDE = 'R' or 'r', the n by n part of
 the array A must contain the symmetric matrix, such that
 when UPLO = 'U' or 'u', the leading n by n upper triangular
 part of the array A must contain the upper triangular part
 of the symmetric matrix and the strictly lower triangular
 part of A is not referenced, and when UPLO = 'L' or 'l',
 the leading n by n lower triangular part of the array A
 must contain the lower triangular part of the symmetric
 matrix and the strictly upper triangular part of A is not
 referenced.
 Unchanged on exit.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. When SIDE = 'L' or 'l' then
 LDA must be at least max(1, m), otherwise LDA must be at
 least max(1, n).
 Unchanged on exit.

 B - COMPLEX array of DIMENSION (LDB, n).
 Before entry, the leading m by n part of the array B must
 contain the matrix B.
 Unchanged on exit.

 LDB - INTEGER.
 On entry, LDB specifies the first dimension of B as declared
 in the calling (sub) program. LDB must be at least
 max(1, m).
 Unchanged on exit.

 BETA - COMPLEX .
 On entry, BETA specifies the scalar beta. When BETA is
 supplied as zero then C need not be set on input.
 Unchanged on exit.

 C - COMPLEX array of DIMENSION (LDC, n).
 Before entry, the leading m by n part of the array C must
 contain the matrix C, except when beta is zero, in which

SLATEC2 (AAAAAA through D9UPAK) - 407

 case C need not be set on entry.
 On exit, the array C is overwritten by the m by n updated
 matrix.

 LDC - INTEGER.
 On entry, LDC specifies the first dimension of C as declared
 in the calling (sub) program. LDC must be at least
 max(1, m).
 Unchanged on exit.

 ***REFERENCES Dongarra, J., Du Croz, J., Duff, I., and Hammarling, S.
 A set of level 3 basic linear algebra subprograms.
 ACM TOMS, Vol. 16, No. 1, pp. 1-17, March 1990.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 890208 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 408

CSYR2K

 SUBROUTINE CSYR2K (UPLO, TRANS, N, K, ALPHA, A, LDA, B, LDB, BETA,
 $ C, LDC)
 ***BEGIN PROLOGUE CSYR2K
 ***PURPOSE Perform symmetric rank 2k update of a complex symmetric
 matrix.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B6
 ***TYPE COMPLEX (SSYR2-S, DSYR2-D, CSYR2-C, CSYR2K-C)
 ***KEYWORDS LEVEL 3 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J., (ANL)
 Duff, I., (AERE)
 Du Croz, J., (NAG)
 Hammarling, S. (NAG)
 ***DESCRIPTION

 CSYR2K performs one of the symmetric rank 2k operations

 C := alpha*A*B' + alpha*B*A' + beta*C,

 or

 C := alpha*A'*B + alpha*B'*A + beta*C,

 where alpha and beta are scalars, C is an n by n symmetric matrix
 and A and B are n by k matrices in the first case and k by n
 matrices in the second case.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the upper or lower
 triangular part of the array C is to be referenced as
 follows:

 UPLO = 'U' or 'u' Only the upper triangular part of C
 is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular part of C
 is to be referenced.

 Unchanged on exit.

 TRANS - CHARACTER*1.
 On entry, TRANS specifies the operation to be performed as
 follows:

 TRANS = 'N' or 'n' C := alpha*A*B' + alpha*B*A' +
 beta*C.

 TRANS = 'T' or 't' C := alpha*A'*B + alpha*B'*A +
 beta*C.

 Unchanged on exit.

 N - INTEGER.

SLATEC2 (AAAAAA through D9UPAK) - 409

 On entry, N specifies the order of the matrix C. N must be
 at least zero.
 Unchanged on exit.

 K - INTEGER.
 On entry with TRANS = 'N' or 'n', K specifies the number
 of columns of the matrices A and B, and on entry with
 TRANS = 'T' or 't', K specifies the number of rows of the
 matrices A and B. K must be at least zero.
 Unchanged on exit.

 ALPHA - COMPLEX .
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A - COMPLEX array of DIMENSION (LDA, ka), where ka is
 k when TRANS = 'N' or 'n', and is n otherwise.
 Before entry with TRANS = 'N' or 'n', the leading n by k
 part of the array A must contain the matrix A, otherwise
 the leading k by n part of the array A must contain the
 matrix A.
 Unchanged on exit.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. When TRANS = 'N' or 'n'
 then LDA must be at least max(1, n), otherwise LDA must
 be at least max(1, k).
 Unchanged on exit.

 B - COMPLEX array of DIMENSION (LDB, kb), where kb is
 k when TRANS = 'N' or 'n', and is n otherwise.
 Before entry with TRANS = 'N' or 'n', the leading n by k
 part of the array B must contain the matrix B, otherwise
 the leading k by n part of the array B must contain the
 matrix B.
 Unchanged on exit.

 LDB - INTEGER.
 On entry, LDB specifies the first dimension of B as declared
 in the calling (sub) program. When TRANS = 'N' or 'n'
 then LDB must be at least max(1, n), otherwise LDB must
 be at least max(1, k).
 Unchanged on exit.

 BETA - COMPLEX .
 On entry, BETA specifies the scalar beta.
 Unchanged on exit.

 C - COMPLEX array of DIMENSION (LDC, n).
 Before entry with UPLO = 'U' or 'u', the leading n by n
 upper triangular part of the array C must contain the upper
 triangular part of the symmetric matrix and the strictly
 lower triangular part of C is not referenced. On exit, the
 upper triangular part of the array C is overwritten by the
 upper triangular part of the updated matrix.
 Before entry with UPLO = 'L' or 'l', the leading n by n
 lower triangular part of the array C must contain the lower
 triangular part of the symmetric matrix and the strictly
 upper triangular part of C is not referenced. On exit, the

SLATEC2 (AAAAAA through D9UPAK) - 410

 lower triangular part of the array C is overwritten by the
 lower triangular part of the updated matrix.

 LDC - INTEGER.
 On entry, LDC specifies the first dimension of C as declared
 in the calling (sub) program. LDC must be at least
 max(1, n).
 Unchanged on exit.

 ***REFERENCES Dongarra, J., Du Croz, J., Duff, I., and Hammarling, S.
 A set of level 3 basic linear algebra subprograms.
 ACM TOMS, Vol. 16, No. 1, pp. 1-17, March 1990.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 890208 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 411

CSYRK

 SUBROUTINE CSYRK (UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, C, LDC)
 ***BEGIN PROLOGUE CSYRK
 ***PURPOSE Perform symmetric rank k update of a complex symmetric
 matrix.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B6
 ***TYPE COMPLEX (SSYRK-S, DSYRK-D, CSYRK-C)
 ***KEYWORDS LEVEL 3 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J., (ANL)
 Duff, I., (AERE)
 Du Croz, J., (NAG)
 Hammarling, S. (NAG)
 ***DESCRIPTION

 CSYRK performs one of the symmetric rank k operations

 C := alpha*A*A' + beta*C,

 or

 C := alpha*A'*A + beta*C,

 where alpha and beta are scalars, C is an n by n symmetric matrix
 and A is an n by k matrix in the first case and a k by n matrix
 in the second case.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the upper or lower
 triangular part of the array C is to be referenced as
 follows:

 UPLO = 'U' or 'u' Only the upper triangular part of C
 is to be referenced.

 UPLO = 'L' or 'l' Only the lower triangular part of C
 is to be referenced.

 Unchanged on exit.

 TRANS - CHARACTER*1.
 On entry, TRANS specifies the operation to be performed as
 follows:

 TRANS = 'N' or 'n' C := alpha*A*A' + beta*C.

 TRANS = 'T' or 't' C := alpha*A'*A + beta*C.

 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the order of the matrix C. N must be
 at least zero.
 Unchanged on exit.

SLATEC2 (AAAAAA through D9UPAK) - 412

 K - INTEGER.
 On entry with TRANS = 'N' or 'n', K specifies the number
 of columns of the matrix A, and on entry with
 TRANS = 'T' or 't', K specifies the number of rows of the
 matrix A. K must be at least zero.
 Unchanged on exit.

 ALPHA - COMPLEX .
 On entry, ALPHA specifies the scalar alpha.
 Unchanged on exit.

 A - COMPLEX array of DIMENSION (LDA, ka), where ka is
 k when TRANS = 'N' or 'n', and is n otherwise.
 Before entry with TRANS = 'N' or 'n', the leading n by k
 part of the array A must contain the matrix A, otherwise
 the leading k by n part of the array A must contain the
 matrix A.
 Unchanged on exit.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. When TRANS = 'N' or 'n'
 then LDA must be at least max(1, n), otherwise LDA must
 be at least max(1, k).
 Unchanged on exit.

 BETA - COMPLEX .
 On entry, BETA specifies the scalar beta.
 Unchanged on exit.

 C - COMPLEX array of DIMENSION (LDC, n).
 Before entry with UPLO = 'U' or 'u', the leading n by n
 upper triangular part of the array C must contain the upper
 triangular part of the symmetric matrix and the strictly
 lower triangular part of C is not referenced. On exit, the
 upper triangular part of the array C is overwritten by the
 upper triangular part of the updated matrix.
 Before entry with UPLO = 'L' or 'l', the leading n by n
 lower triangular part of the array C must contain the lower
 triangular part of the symmetric matrix and the strictly
 upper triangular part of C is not referenced. On exit, the
 lower triangular part of the array C is overwritten by the
 lower triangular part of the updated matrix.

 LDC - INTEGER.
 On entry, LDC specifies the first dimension of C as declared
 in the calling (sub) program. LDC must be at least
 max(1, n).
 Unchanged on exit.

 ***REFERENCES Dongarra, J., Du Croz, J., Duff, I., and Hammarling, S.
 A set of level 3 basic linear algebra subprograms.
 ACM TOMS, Vol. 16, No. 1, pp. 1-17, March 1990.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 890208 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 413

CTAN

 COMPLEX FUNCTION CTAN (Z)
 ***BEGIN PROLOGUE CTAN
 ***PURPOSE Compute the complex tangent.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C4A
 ***TYPE COMPLEX (CTAN-C)
 ***KEYWORDS ELEMENTARY FUNCTIONS, FNLIB, TANGENT, TRIGONOMETRIC
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 CTAN(Z) calculates the complex trigonometric tangent of complex
 argument Z. Z is in units of radians.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED R1MACH, XERCLR, XERMSG
 ***REVISION HISTORY (YYMMDD)
 770401 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 414

CTANH

 COMPLEX FUNCTION CTANH (Z)
 ***BEGIN PROLOGUE CTANH
 ***PURPOSE Compute the complex hyperbolic tangent.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY C4C
 ***TYPE COMPLEX (CTANH-C)
 ***KEYWORDS ELEMENTARY FUNCTIONS, FNLIB, HYPERBOLIC TANGENT
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 CTANH(Z) calculates the complex hyperbolic tangent of complex
 argument Z. Z is in units of radians.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED CTAN
 ***REVISION HISTORY (YYMMDD)
 770401 DATE WRITTEN
 861211 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 415

CTBMV

 SUBROUTINE CTBMV (UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX)
 ***BEGIN PROLOGUE CTBMV
 ***PURPOSE Multiply a complex vector by a complex triangular band
 matrix.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE COMPLEX (STBMV-S, DTBMV-D, CTBMV-C)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 CTBMV performs one of the matrix-vector operations

 x := A*x, or x := A'*x, or x := conjg(A')*x,

 where x is an n element vector and A is an n by n unit, or non-unit,
 upper or lower triangular band matrix, with (k + 1) diagonals.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the matrix is an upper or
 lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular matrix.

 UPLO = 'L' or 'l' A is a lower triangular matrix.

 Unchanged on exit.

 TRANS - CHARACTER*1.
 On entry, TRANS specifies the operation to be performed as
 follows:

 TRANS = 'N' or 'n' x := A*x.

 TRANS = 'T' or 't' x := A'*x.

 TRANS = 'C' or 'c' x := conjg(A')*x.

 Unchanged on exit.

 DIAG - CHARACTER*1.
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit triangular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

 Unchanged on exit.

SLATEC2 (AAAAAA through D9UPAK) - 416

 N - INTEGER.
 On entry, N specifies the order of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 K - INTEGER.
 On entry with UPLO = 'U' or 'u', K specifies the number of
 super-diagonals of the matrix A.
 On entry with UPLO = 'L' or 'l', K specifies the number of
 sub-diagonals of the matrix A.
 K must satisfy 0 .le. K.
 Unchanged on exit.

 A - COMPLEX array of DIMENSION (LDA, n).
 Before entry with UPLO = 'U' or 'u', the leading (k + 1)
 by n part of the array A must contain the upper triangular
 band part of the matrix of coefficients, supplied column by
 column, with the leading diagonal of the matrix in row
 (k + 1) of the array, the first super-diagonal starting at
 position 2 in row k, and so on. The top left k by k triangle
 of the array A is not referenced.
 The following program segment will transfer an upper
 triangular band matrix from conventional full matrix storage
 to band storage:

 DO 20, J = 1, N
 M = K + 1 - J
 DO 10, I = MAX(1, J - K), J
 A(M + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE

 Before entry with UPLO = 'L' or 'l', the leading (k + 1)
 by n part of the array A must contain the lower triangular
 band part of the matrix of coefficients, supplied column by
 column, with the leading diagonal of the matrix in row 1 of
 the array, the first sub-diagonal starting at position 1 in
 row 2, and so on. The bottom right k by k triangle of the
 array A is not referenced.
 The following program segment will transfer a lower
 triangular band matrix from conventional full matrix storage
 to band storage:

 DO 20, J = 1, N
 M = 1 - J
 DO 10, I = J, MIN(N, J + K)
 A(M + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE

 Note that when DIAG = 'U' or 'u' the elements of the array A
 corresponding to the diagonal elements of the matrix are not
 referenced, but are assumed to be unity.
 Unchanged on exit.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. LDA must be at least
 (k + 1).

SLATEC2 (AAAAAA through D9UPAK) - 417

 Unchanged on exit.

 X - COMPLEX array of dimension at least
 (1 + (n - 1)*abs(INCX)).
 Before entry, the incremented array X must contain the n
 element vector x. On exit, X is overwritten with the
 transformed vector x.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 418

CTBSV

 SUBROUTINE CTBSV (UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX)
 ***BEGIN PROLOGUE CTBSV
 ***PURPOSE Solve a complex triangular banded system of equations.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE COMPLEX (STBSV-S, DTBSV-D, CTBSV-C)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 CTBSV solves one of the systems of equations

 A*x = b, or A'*x = b, or conjg(A')*x = b,

 where b and x are n element vectors and A is an n by n unit, or
 non-unit, upper or lower triangular band matrix, with (k + 1)
 diagonals.

 No test for singularity or near-singularity is included in this
 routine. Such tests must be performed before calling this routine.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the matrix is an upper or
 lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular matrix.

 UPLO = 'L' or 'l' A is a lower triangular matrix.

 Unchanged on exit.

 TRANS - CHARACTER*1.
 On entry, TRANS specifies the equations to be solved as
 follows:

 TRANS = 'N' or 'n' A*x = b.

 TRANS = 'T' or 't' A'*x = b.

 TRANS = 'C' or 'c' conjg(A')*x = b.

 Unchanged on exit.

 DIAG - CHARACTER*1.
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit triangular.

 DIAG = 'N' or 'n' A is not assumed to be unit

SLATEC2 (AAAAAA through D9UPAK) - 419

 triangular.

 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the order of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 K - INTEGER.
 On entry with UPLO = 'U' or 'u', K specifies the number of
 super-diagonals of the matrix A.
 On entry with UPLO = 'L' or 'l', K specifies the number of
 sub-diagonals of the matrix A.
 K must satisfy 0 .le. K.
 Unchanged on exit.

 A - COMPLEX array of DIMENSION (LDA, n).
 Before entry with UPLO = 'U' or 'u', the leading (k + 1)
 by n part of the array A must contain the upper triangular
 band part of the matrix of coefficients, supplied column by
 column, with the leading diagonal of the matrix in row
 (k + 1) of the array, the first super-diagonal starting at
 position 2 in row k, and so on. The top left k by k triangle
 of the array A is not referenced.
 The following program segment will transfer an upper
 triangular band matrix from conventional full matrix storage
 to band storage:

 DO 20, J = 1, N
 M = K + 1 - J
 DO 10, I = MAX(1, J - K), J
 A(M + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE

 Before entry with UPLO = 'L' or 'l', the leading (k + 1)
 by n part of the array A must contain the lower triangular
 band part of the matrix of coefficients, supplied column by
 column, with the leading diagonal of the matrix in row 1 of
 the array, the first sub-diagonal starting at position 1 in
 row 2, and so on. The bottom right k by k triangle of the
 array A is not referenced.
 The following program segment will transfer a lower
 triangular band matrix from conventional full matrix storage
 to band storage:

 DO 20, J = 1, N
 M = 1 - J
 DO 10, I = J, MIN(N, J + K)
 A(M + I, J) = matrix(I, J)
 10 CONTINUE
 20 CONTINUE

 Note that when DIAG = 'U' or 'u' the elements of the array A
 corresponding to the diagonal elements of the matrix are not
 referenced, but are assumed to be unity.
 Unchanged on exit.

 LDA - INTEGER.

SLATEC2 (AAAAAA through D9UPAK) - 420

 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. LDA must be at least
 (k + 1).
 Unchanged on exit.

 X - COMPLEX array of dimension at least
 (1 + (n - 1)*abs(INCX)).
 Before entry, the incremented array X must contain the n
 element right-hand side vector b. On exit, X is overwritten
 with the solution vector x.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 421

CTPMV

 SUBROUTINE CTPMV (UPLO, TRANS, DIAG, N, AP, X, INCX)
 ***BEGIN PROLOGUE CTPMV
 ***PURPOSE Perform one of the matrix-vector operations.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE COMPLEX (STPMV-S, DTPMV-D, CTPMV-C)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 CTPMV performs one of the matrix-vector operations

 x := A*x, or x := A'*x, or x := conjg(A')*x,

 where x is an n element vector and A is an n by n unit, or non-unit,
 upper or lower triangular matrix, supplied in packed form.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the matrix is an upper or
 lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular matrix.

 UPLO = 'L' or 'l' A is a lower triangular matrix.

 Unchanged on exit.

 TRANS - CHARACTER*1.
 On entry, TRANS specifies the operation to be performed as
 follows:

 TRANS = 'N' or 'n' x := A*x.

 TRANS = 'T' or 't' x := A'*x.

 TRANS = 'C' or 'c' x := conjg(A')*x.

 Unchanged on exit.

 DIAG - CHARACTER*1.
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit triangular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

 Unchanged on exit.

SLATEC2 (AAAAAA through D9UPAK) - 422

 N - INTEGER.
 On entry, N specifies the order of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 AP - COMPLEX array of DIMENSION at least
 ((n*(n + 1))/2).
 Before entry with UPLO = 'U' or 'u', the array AP must
 contain the upper triangular matrix packed sequentially,
 column by column, so that AP(1) contains a(1, 1),
 AP(2) and AP(3) contain a(1, 2) and a(2, 2)
 respectively, and so on.
 Before entry with UPLO = 'L' or 'l', the array AP must
 contain the lower triangular matrix packed sequentially,
 column by column, so that AP(1) contains a(1, 1),
 AP(2) and AP(3) contain a(2, 1) and a(3, 1)
 respectively, and so on.
 Note that when DIAG = 'U' or 'u', the diagonal elements of
 A are not referenced, but are assumed to be unity.
 Unchanged on exit.

 X - COMPLEX array of dimension at least
 (1 + (n - 1)*abs(INCX)).
 Before entry, the incremented array X must contain the n
 element vector x. On exit, X is overwritten with the
 transformed vector x.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 423

CTPSV

 SUBROUTINE CTPSV (UPLO, TRANS, DIAG, N, AP, X, INCX)
 ***BEGIN PROLOGUE CTPSV
 ***PURPOSE Solve one of the systems of equations.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE COMPLEX (STPSV-S, DTPSV-D, CTPSV-C)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 CTPSV solves one of the systems of equations

 A*x = b, or A'*x = b, or conjg(A')*x = b,

 where b and x are n element vectors and A is an n by n unit, or
 non-unit, upper or lower triangular matrix, supplied in packed form.

 No test for singularity or near-singularity is included in this
 routine. Such tests must be performed before calling this routine.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the matrix is an upper or
 lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular matrix.

 UPLO = 'L' or 'l' A is a lower triangular matrix.

 Unchanged on exit.

 TRANS - CHARACTER*1.
 On entry, TRANS specifies the equations to be solved as
 follows:

 TRANS = 'N' or 'n' A*x = b.

 TRANS = 'T' or 't' A'*x = b.

 TRANS = 'C' or 'c' conjg(A')*x = b.

 Unchanged on exit.

 DIAG - CHARACTER*1.
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit triangular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

SLATEC2 (AAAAAA through D9UPAK) - 424

 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the order of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 AP - COMPLEX array of DIMENSION at least
 ((n*(n + 1))/2).
 Before entry with UPLO = 'U' or 'u', the array AP must
 contain the upper triangular matrix packed sequentially,
 column by column, so that AP(1) contains a(1, 1),
 AP(2) and AP(3) contain a(1, 2) and a(2, 2)
 respectively, and so on.
 Before entry with UPLO = 'L' or 'l', the array AP must
 contain the lower triangular matrix packed sequentially,
 column by column, so that AP(1) contains a(1, 1),
 AP(2) and AP(3) contain a(2, 1) and a(3, 1)
 respectively, and so on.
 Note that when DIAG = 'U' or 'u', the diagonal elements of
 A are not referenced, but are assumed to be unity.
 Unchanged on exit.

 X - COMPLEX array of dimension at least
 (1 + (n - 1)*abs(INCX)).
 Before entry, the incremented array X must contain the n
 element right-hand side vector b. On exit, X is overwritten
 with the solution vector x.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 425

CTRCO

 SUBROUTINE CTRCO (T, LDT, N, RCOND, Z, JOB)
 ***BEGIN PROLOGUE CTRCO
 ***PURPOSE Estimate the condition number of a triangular matrix.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2C3
 ***TYPE COMPLEX (STRCO-S, DTRCO-D, CTRCO-C)
 ***KEYWORDS CONDITION NUMBER, LINEAR ALGEBRA, LINPACK,
 TRIANGULAR MATRIX
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 CTRCO estimates the condition of a complex triangular matrix.

 On Entry

 T COMPLEX(LDT,N)
 T contains the triangular matrix. The zero
 elements of the matrix are not referenced, and
 the corresponding elements of the array can be
 used to store other information.

 LDT INTEGER
 LDT is the leading dimension of the array T.

 N INTEGER
 N is the order of the system.

 JOB INTEGER
 = 0 T is lower triangular.
 = nonzero T is upper triangular.

 On Return

 RCOND REAL
 an estimate of the reciprocal condition of T .
 For the system T*X = B , relative perturbations
 in T and B of size EPSILON may cause
 relative perturbations in X of size EPSILON/RCOND .
 If RCOND is so small that the logical expression
 1.0 + RCOND .EQ. 1.0
 is true, then T may be singular to working
 precision. In particular, RCOND is zero if
 exact singularity is detected or the estimate
 underflows.

 Z COMPLEX(N)
 a work vector whose contents are usually unimportant.
 If T is close to a singular matrix, then Z is
 an approximate null vector in the sense that
 NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CAXPY, CSSCAL, SCASUM
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN

SLATEC2 (AAAAAA through D9UPAK) - 426

 890531 Changed all specific intrinsics to generic. (WRB)
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 427

CTRDI

 SUBROUTINE CTRDI (T, LDT, N, DET, JOB, INFO)
 ***BEGIN PROLOGUE CTRDI
 ***PURPOSE Compute the determinant and inverse of a triangular matrix.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2C3, D3C3
 ***TYPE COMPLEX (STRDI-S, DTRDI-D, CTRDI-C)
 ***KEYWORDS DETERMINANT, INVERSE, LINEAR ALGEBRA, LINPACK,
 TRIANGULAR MATRIX
 ***AUTHOR Moler, C. B., (U. of New Mexico)
 ***DESCRIPTION

 CTRDI computes the determinant and inverse of a complex
 triangular matrix.

 On Entry

 T COMPLEX(LDT,N)
 T contains the triangular matrix. The zero
 elements of the matrix are not referenced, and
 the corresponding elements of the array can be
 used to store other information.

 LDT INTEGER
 LDT is the leading dimension of the array T.

 N INTEGER
 N is the order of the system.

 JOB INTEGER
 = 010 no det, inverse of lower triangular.
 = 011 no det, inverse of upper triangular.
 = 100 det, no inverse.
 = 110 det, inverse of lower triangular.
 = 111 det, inverse of upper triangular.

 On Return

 T inverse of original matrix if requested.
 Otherwise unchanged.

 DET COMPLEX(2)
 determinant of original matrix if requested.
 Otherwise not referenced.
 Determinant = DET(1) * 10.0**DET(2)
 with 1.0 .LE. CABS1(DET(1)) .LT. 10.0
 or DET(1) .EQ. 0.0 .

 INFO INTEGER
 INFO contains zero if the system is nonsingular
 and the inverse is requested.
 Otherwise INFO contains the index of
 a zero diagonal element of T.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.

SLATEC2 (AAAAAA through D9UPAK) - 428

 ***ROUTINES CALLED CAXPY, CSCAL
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 429

CTRMM

 SUBROUTINE CTRMM (SIDE, UPLO, TRANSA, DIAG, M, N, APLHA, A, LDA,
 $ B, LDB)
 ***BEGIN PROLOGUE CTRMM
 ***PURPOSE Multiply a complex general matrix by a complex triangular
 matrix.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B6
 ***TYPE COMPLEX (STRMM-S, DTRMM-D, CTRMM-C)
 ***KEYWORDS LEVEL 3 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J., (ANL)
 Duff, I., (AERE)
 Du Croz, J., (NAG)
 Hammarling, S. (NAG)
 ***DESCRIPTION

 CTRMM performs one of the matrix-matrix operations

 B := alpha*op(A)*B, or B := alpha*B*op(A)

 where alpha is a scalar, B is an m by n matrix, A is a unit, or
 non-unit, upper or lower triangular matrix and op(A) is one of

 op(A) = A or op(A) = A' or op(A) = conjg(A').

 Parameters
 ==========

 SIDE - CHARACTER*1.
 On entry, SIDE specifies whether op(A) multiplies B from
 the left or right as follows:

 SIDE = 'L' or 'l' B := alpha*op(A)*B.

 SIDE = 'R' or 'r' B := alpha*B*op(A).

 Unchanged on exit.

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the matrix A is an upper or
 lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular matrix.

 UPLO = 'L' or 'l' A is a lower triangular matrix.

 Unchanged on exit.

 TRANSA - CHARACTER*1.
 On entry, TRANSA specifies the form of op(A) to be used in
 the matrix multiplication as follows:

 TRANSA = 'N' or 'n' op(A) = A.

 TRANSA = 'T' or 't' op(A) = A'.

 TRANSA = 'C' or 'c' op(A) = conjg(A').

SLATEC2 (AAAAAA through D9UPAK) - 430

 Unchanged on exit.

 DIAG - CHARACTER*1.
 On entry, DIAG specifies whether or not A is unit triangular
 as follows:

 DIAG = 'U' or 'u' A is assumed to be unit triangular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

 Unchanged on exit.

 M - INTEGER.
 On entry, M specifies the number of rows of B. M must be at
 least zero.
 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the number of columns of B. N must be
 at least zero.
 Unchanged on exit.

 ALPHA - COMPLEX .
 On entry, ALPHA specifies the scalar alpha. When alpha is
 zero then A is not referenced and B need not be set before
 entry.
 Unchanged on exit.

 A - COMPLEX array of DIMENSION (LDA, k), where k is m
 when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'.
 Before entry with UPLO = 'U' or 'u', the leading k by k
 upper triangular part of the array A must contain the upper
 triangular matrix and the strictly lower triangular part of
 A is not referenced.
 Before entry with UPLO = 'L' or 'l', the leading k by k
 lower triangular part of the array A must contain the lower
 triangular matrix and the strictly upper triangular part of
 A is not referenced.
 Note that when DIAG = 'U' or 'u', the diagonal elements of
 A are not referenced either, but are assumed to be unity.
 Unchanged on exit.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. When SIDE = 'L' or 'l' then
 LDA must be at least max(1, m), when SIDE = 'R' or 'r'
 then LDA must be at least max(1, n).
 Unchanged on exit.

 B - COMPLEX array of DIMENSION (LDB, n).
 Before entry, the leading m by n part of the array B must
 contain the matrix B, and on exit is overwritten by the
 transformed matrix.

 LDB - INTEGER.
 On entry, LDB specifies the first dimension of B as declared
 in the calling (sub) program. LDB must be at least
 max(1, m).

SLATEC2 (AAAAAA through D9UPAK) - 431

 Unchanged on exit.

 ***REFERENCES Dongarra, J., Du Croz, J., Duff, I., and Hammarling, S.
 A set of level 3 basic linear algebra subprograms.
 ACM TOMS, Vol. 16, No. 1, pp. 1-17, March 1990.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 890208 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 432

CTRMV

 SUBROUTINE CTRMV (UPLO, TRANS, DIAG, N, A, LDA, X, INCX)
 ***BEGIN PROLOGUE CTRMV
 ***PURPOSE Multiply a complex vector by a complex triangular matrix.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE COMPLEX (STRMV-S, DTRMV-D, CTRMV-C)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 CTRMV performs one of the matrix-vector operations

 x := A*x, or x := A'*x, or x := conjg(A')*x,

 where x is an n element vector and A is an n by n unit, or non-unit,
 upper or lower triangular matrix.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the matrix is an upper or
 lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular matrix.

 UPLO = 'L' or 'l' A is a lower triangular matrix.

 Unchanged on exit.

 TRANS - CHARACTER*1.
 On entry, TRANS specifies the operation to be performed as
 follows:

 TRANS = 'N' or 'n' x := A*x.

 TRANS = 'T' or 't' x := A'*x.

 TRANS = 'C' or 'c' x := conjg(A')*x.

 Unchanged on exit.

 DIAG - CHARACTER*1.
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit triangular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

 Unchanged on exit.

SLATEC2 (AAAAAA through D9UPAK) - 433

 N - INTEGER.
 On entry, N specifies the order of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 A - COMPLEX array of DIMENSION (LDA, n).
 Before entry with UPLO = 'U' or 'u', the leading n by n
 upper triangular part of the array A must contain the upper
 triangular matrix and the strictly lower triangular part of
 A is not referenced.
 Before entry with UPLO = 'L' or 'l', the leading n by n
 lower triangular part of the array A must contain the lower
 triangular matrix and the strictly upper triangular part of
 A is not referenced.
 Note that when DIAG = 'U' or 'u', the diagonal elements of
 A are not referenced either, but are assumed to be unity.
 Unchanged on exit.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. LDA must be at least
 max(1, n).
 Unchanged on exit.

 X - COMPLEX array of dimension at least
 (1 + (n - 1)*abs(INCX)).
 Before entry, the incremented array X must contain the n
 element vector x. On exit, X is overwritten with the
 transformed vector x.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 434

CTRSL

 SUBROUTINE CTRSL (T, LDT, N, B, JOB, INFO)
 ***BEGIN PROLOGUE CTRSL
 ***PURPOSE Solve a system of the form T*X=B or CTRANS(T)*X=B, where
 T is a triangular matrix. Here CTRANS(T) is the conjugate
 transpose.
 ***LIBRARY SLATEC (LINPACK)
 ***CATEGORY D2C3
 ***TYPE COMPLEX (STRSL-S, DTRSL-D, CTRSL-C)
 ***KEYWORDS LINEAR ALGEBRA, LINPACK, TRIANGULAR LINEAR SYSTEM,
 TRIANGULAR MATRIX
 ***AUTHOR Stewart, G. W., (U. of Maryland)
 ***DESCRIPTION

 CTRSL solves systems of the form

 T * X = B
 or
 CTRANS(T) * X = B

 where T is a triangular matrix of order N. Here CTRANS(T)
 denotes the conjugate transpose of the matrix T.

 On Entry

 T COMPLEX(LDT,N)
 T contains the matrix of the system. The zero
 elements of the matrix are not referenced, and
 the corresponding elements of the array can be
 used to store other information.

 LDT INTEGER
 LDT is the leading dimension of the array T.

 N INTEGER
 N is the order of the system.

 B COMPLEX(N).
 B contains the right hand side of the system.

 JOB INTEGER
 JOB specifies what kind of system is to be solved.
 If JOB is

 00 solve T*X = B, T lower triangular,
 01 solve T*X = B, T upper triangular,
 10 solve CTRANS(T)*X = B, T lower triangular,
 11 solve CTRANS(T)*X = B, T upper triangular.

 On Return

 B B contains the solution, if INFO .EQ. 0.
 Otherwise B is unaltered.

 INFO INTEGER
 INFO contains zero if the system is nonsingular.
 Otherwise INFO contains the index of

SLATEC2 (AAAAAA through D9UPAK) - 435

 the first zero diagonal element of T.

 ***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
 Stewart, LINPACK Users' Guide, SIAM, 1979.
 ***ROUTINES CALLED CAXPY, CDOTC
 ***REVISION HISTORY (YYMMDD)
 780814 DATE WRITTEN
 890831 Modified array declarations. (WRB)
 890831 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900326 Removed duplicate information from DESCRIPTION section.
 (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 436

CTRSM

 SUBROUTINE CTRSM (SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA,
 $ B, LDB)
 ***BEGIN PROLOGUE CTRSM
 ***PURPOSE Solve a complex triangular system of equations with
 multiple right-hand sides.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B6
 ***TYPE COMPLEX (STRSM-S, DTRSM-D, CTRSM-C)
 ***KEYWORDS LEVEL 3 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J., (ANL)
 Duff, I., (AERE)
 Du Croz, J., (NAG)
 Hammarling, S. (NAG)
 ***DESCRIPTION

 CTRSM solves one of the matrix equations

 op(A)*X = alpha*B, or X*op(A) = alpha*B,

 where alpha is a scalar, X and B are m by n matrices, A is a unit, or
 non-unit, upper or lower triangular matrix and op(A) is one of

 op(A) = A or op(A) = A' or op(A) = conjg(A').

 The matrix X is overwritten on B.

 Parameters
 ==========

 SIDE - CHARACTER*1.
 On entry, SIDE specifies whether op(A) appears on the left
 or right of X as follows:

 SIDE = 'L' or 'l' op(A)*X = alpha*B.

 SIDE = 'R' or 'r' X*op(A) = alpha*B.

 Unchanged on exit.

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the matrix A is an upper or
 lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular matrix.

 UPLO = 'L' or 'l' A is a lower triangular matrix.

 Unchanged on exit.

 TRANSA - CHARACTER*1.
 On entry, TRANSA specifies the form of op(A) to be used in
 the matrix multiplication as follows:

 TRANSA = 'N' or 'n' op(A) = A.

 TRANSA = 'T' or 't' op(A) = A'.

SLATEC2 (AAAAAA through D9UPAK) - 437

 TRANSA = 'C' or 'c' op(A) = conjg(A').

 Unchanged on exit.

 DIAG - CHARACTER*1.
 On entry, DIAG specifies whether or not A is unit triangular
 as follows:

 DIAG = 'U' or 'u' A is assumed to be unit triangular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

 Unchanged on exit.

 M - INTEGER.
 On entry, M specifies the number of rows of B. M must be at
 least zero.
 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the number of columns of B. N must be
 at least zero.
 Unchanged on exit.

 ALPHA - COMPLEX .
 On entry, ALPHA specifies the scalar alpha. When alpha is
 zero then A is not referenced and B need not be set before
 entry.
 Unchanged on exit.

 A - COMPLEX array of DIMENSION (LDA, k), where k is m
 when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'.
 Before entry with UPLO = 'U' or 'u', the leading k by k
 upper triangular part of the array A must contain the upper
 triangular matrix and the strictly lower triangular part of
 A is not referenced.
 Before entry with UPLO = 'L' or 'l', the leading k by k
 lower triangular part of the array A must contain the lower
 triangular matrix and the strictly upper triangular part of
 A is not referenced.
 Note that when DIAG = 'U' or 'u', the diagonal elements of
 A are not referenced either, but are assumed to be unity.
 Unchanged on exit.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. When SIDE = 'L' or 'l' then
 LDA must be at least max(1, m), when SIDE = 'R' or 'r'
 then LDA must be at least max(1, n).
 Unchanged on exit.

 B - COMPLEX array of DIMENSION (LDB, n).
 Before entry, the leading m by n part of the array B must
 contain the right-hand side matrix B, and on exit is
 overwritten by the solution matrix X.

 LDB - INTEGER.
 On entry, LDB specifies the first dimension of B as declared

SLATEC2 (AAAAAA through D9UPAK) - 438

 in the calling (sub) program. LDB must be at least
 max(1, m).
 Unchanged on exit.

 ***REFERENCES Dongarra, J., Du Croz, J., Duff, I., and Hammarling, S.
 A set of level 3 basic linear algebra subprograms.
 ACM TOMS, Vol. 16, No. 1, pp. 1-17, March 1990.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 890208 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 439

CTRSV

 SUBROUTINE CTRSV (UPLO, TRANS, DIAG, N, A, LDA, X, INCX)
 ***BEGIN PROLOGUE CTRSV
 ***PURPOSE Solve a complex triangular system of equations.
 ***LIBRARY SLATEC (BLAS)
 ***CATEGORY D1B4
 ***TYPE COMPLEX (STRSV-S, DTRSV-D, CTRSV-C)
 ***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
 ***AUTHOR Dongarra, J. J., (ANL)
 Du Croz, J., (NAG)
 Hammarling, S., (NAG)
 Hanson, R. J., (SNLA)
 ***DESCRIPTION

 CTRSV solves one of the systems of equations

 A*x = b, or A'*x = b, or conjg(A')*x = b,

 where b and x are n element vectors and A is an n by n unit, or
 non-unit, upper or lower triangular matrix.

 No test for singularity or near-singularity is included in this
 routine. Such tests must be performed before calling this routine.

 Parameters
 ==========

 UPLO - CHARACTER*1.
 On entry, UPLO specifies whether the matrix is an upper or
 lower triangular matrix as follows:

 UPLO = 'U' or 'u' A is an upper triangular matrix.

 UPLO = 'L' or 'l' A is a lower triangular matrix.

 Unchanged on exit.

 TRANS - CHARACTER*1.
 On entry, TRANS specifies the equations to be solved as
 follows:

 TRANS = 'N' or 'n' A*x = b.

 TRANS = 'T' or 't' A'*x = b.

 TRANS = 'C' or 'c' conjg(A')*x = b.

 Unchanged on exit.

 DIAG - CHARACTER*1.
 On entry, DIAG specifies whether or not A is unit
 triangular as follows:

 DIAG = 'U' or 'u' A is assumed to be unit triangular.

 DIAG = 'N' or 'n' A is not assumed to be unit
 triangular.

SLATEC2 (AAAAAA through D9UPAK) - 440

 Unchanged on exit.

 N - INTEGER.
 On entry, N specifies the order of the matrix A.
 N must be at least zero.
 Unchanged on exit.

 A - COMPLEX array of DIMENSION (LDA, n).
 Before entry with UPLO = 'U' or 'u', the leading n by n
 upper triangular part of the array A must contain the upper
 triangular matrix and the strictly lower triangular part of
 A is not referenced.
 Before entry with UPLO = 'L' or 'l', the leading n by n
 lower triangular part of the array A must contain the lower
 triangular matrix and the strictly upper triangular part of
 A is not referenced.
 Note that when DIAG = 'U' or 'u', the diagonal elements of
 A are not referenced either, but are assumed to be unity.
 Unchanged on exit.

 LDA - INTEGER.
 On entry, LDA specifies the first dimension of A as declared
 in the calling (sub) program. LDA must be at least
 max(1, n).
 Unchanged on exit.

 X - COMPLEX array of dimension at least
 (1 + (n - 1)*abs(INCX)).
 Before entry, the incremented array X must contain the n
 element right-hand side vector b. On exit, X is overwritten
 with the solution vector x.

 INCX - INTEGER.
 On entry, INCX specifies the increment for the elements of
 X. INCX must not be zero.
 Unchanged on exit.

 ***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
 Hanson, R. J. An extended set of Fortran basic linear
 algebra subprograms. ACM TOMS, Vol. 14, No. 1,
 pp. 1-17, March 1988.
 ***ROUTINES CALLED LSAME, XERBLA
 ***REVISION HISTORY (YYMMDD)
 861022 DATE WRITTEN
 910605 Modified to meet SLATEC prologue standards. Only comment
 lines were modified. (BKS)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 441

CV

 REAL FUNCTION CV (XVAL, NDATA, NCONST, NORD, NBKPT, BKPT, W)
 ***BEGIN PROLOGUE CV
 ***PURPOSE Evaluate the variance function of the curve obtained
 by the constrained B-spline fitting subprogram FC.
 ***LIBRARY SLATEC
 ***CATEGORY L7A3
 ***TYPE SINGLE PRECISION (CV-S, DCV-D)
 ***KEYWORDS ANALYSIS OF COVARIANCE, B-SPLINE,
 CONSTRAINED LEAST SQUARES, CURVE FITTING
 ***AUTHOR Hanson, R. J., (SNLA)
 ***DESCRIPTION

 CV() is a companion function subprogram for FC(). The
 documentation for FC() has complete usage instructions.

 CV() is used to evaluate the variance function of the curve
 obtained by the constrained B-spline fitting subprogram, FC().
 The variance function defines the square of the probable error
 of the fitted curve at any point, XVAL. One can use the square
 root of this variance function to determine a probable error band
 around the fitted curve.

 CV() is used after a call to FC(). MODE, an input variable to
 FC(), is used to indicate if the variance function is desired.
 In order to use CV(), MODE must equal 2 or 4 on input to FC().
 MODE is also used as an output flag from FC(). Check to make
 sure that MODE = 0 after calling FC(), indicating a successful
 constrained curve fit. The array SDDATA, as input to FC(), must
 also be defined with the standard deviation or uncertainty of the
 Y values to use CV().

 To evaluate the variance function after calling FC() as stated
 above, use CV() as shown here

 VAR=CV(XVAL,NDATA,NCONST,NORD,NBKPT,BKPT,W)

 The variance function is given by

 VAR=(transpose of B(XVAL))*C*B(XVAL)/MAX(NDATA-N,1)

 where N = NBKPT - NORD.

 The vector B(XVAL) is the B-spline basis function values at
 X=XVAL. The covariance matrix, C, of the solution coefficients
 accounts only for the least squares equations and the explicitly
 stated equality constraints. This fact must be considered when
 interpreting the variance function from a data fitting problem
 that has inequality constraints on the fitted curve.

 All the variables in the calling sequence for CV() are used in
 FC() except the variable XVAL. Do not change the values of these
 variables between the call to FC() and the use of CV().

 The following is a brief description of the variables

 XVAL The point where the variance is desired.

SLATEC2 (AAAAAA through D9UPAK) - 442

 NDATA The number of discrete (X,Y) pairs for which FC()
 calculated a piece-wise polynomial curve.

 NCONST The number of conditions that constrained the B-spline in
 FC().

 NORD The order of the B-spline used in FC().
 The value of NORD must satisfy 1 < NORD < 20 .

 (The order of the spline is one more than the degree of
 the piece-wise polynomial defined on each interval. This
 is consistent with the B-spline package convention. For
 example, NORD=4 when we are using piece-wise cubics.)

 NBKPT The number of knots in the array BKPT(*).
 The value of NBKPT must satisfy NBKPT .GE. 2*NORD.

 BKPT(*) The real array of knots. Normally the problem data
 interval will be included between the limits BKPT(NORD)
 and BKPT(NBKPT-NORD+1). The additional end knots
 BKPT(I),I=1,...,NORD-1 and I=NBKPT-NORD+2,...,NBKPT, are
 required by FC() to compute the functions used to fit
 the data.

 W(*) Real work array as used in FC(). See FC() for the
 required length of W(*). The contents of W(*) must not
 be modified by the user if the variance function is
 desired.

 ***REFERENCES R. J. Hanson, Constrained least squares curve fitting
 to discrete data using B-splines, a users guide,
 Report SAND78-1291, Sandia Laboratories, December
 1978.
 ***ROUTINES CALLED BSPLVN, SDOT
 ***REVISION HISTORY (YYMMDD)
 780801 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 920501 Reformatted the REFERENCES section. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 443

D1MACH

 DOUBLE PRECISION FUNCTION D1MACH (I)
 ***BEGIN PROLOGUE D1MACH
 ***PURPOSE Return floating point machine dependent constants.
 ***LIBRARY SLATEC
 ***CATEGORY R1
 ***TYPE DOUBLE PRECISION (R1MACH-S, D1MACH-D)
 ***KEYWORDS MACHINE CONSTANTS
 ***AUTHOR Fox, P. A., (Bell Labs)
 Hall, A. D., (Bell Labs)
 Schryer, N. L., (Bell Labs)
 ***DESCRIPTION

 D1MACH can be used to obtain machine-dependent parameters for the
 local machine environment. It is a function subprogram with one
 (input) argument, and can be referenced as follows:

 D = D1MACH(I)

 where I=1,...,5. The (output) value of D above is determined by
 the (input) value of I. The results for various values of I are
 discussed below.

 D1MACH(1) = B**(EMIN-1), the smallest positive magnitude.
 D1MACH(2) = B**EMAX*(1 - B**(-T)), the largest magnitude.
 D1MACH(3) = B**(-T), the smallest relative spacing.
 D1MACH(4) = B**(1-T), the largest relative spacing.
 D1MACH(5) = LOG10(B)

 Assume double precision numbers are represented in the T-digit,
 base-B form

 sign (B**E)*((X(1)/B) + ... + (X(T)/B**T))

 where 0 .LE. X(I) .LT. B for I=1,...,T, 0 .LT. X(1), and
 EMIN .LE. E .LE. EMAX.

 The values of B, T, EMIN and EMAX are provided in I1MACH as
 follows:
 I1MACH(10) = B, the base.
 I1MACH(14) = T, the number of base-B digits.
 I1MACH(15) = EMIN, the smallest exponent E.
 I1MACH(16) = EMAX, the largest exponent E.

 To alter this function for a particular environment, the desired
 set of DATA statements should be activated by removing the C from
 column 1. Also, the values of D1MACH(1) - D1MACH(4) should be
 checked for consistency with the local operating system.

 ***REFERENCES P. A. Fox, A. D. Hall and N. L. Schryer, Framework for
 a portable library, ACM Transactions on Mathematical
 Software 4, 2 (June 1978), pp. 177-188.
 ***ROUTINES CALLED XERMSG
 ***REVISION HISTORY (YYMMDD)
 750101 DATE WRITTEN
 890213 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)

SLATEC2 (AAAAAA through D9UPAK) - 444

 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 900618 Added DEC RISC constants. (WRB)
 900723 Added IBM RS 6000 constants. (WRB)
 900911 Added SUN 386i constants. (WRB)
 910710 Added HP 730 constants. (SMR)
 911114 Added Convex IEEE constants. (WRB)
 920121 Added SUN -r8 compiler option constants. (WRB)
 920229 Added Touchstone Delta i860 constants. (WRB)
 920501 Reformatted the REFERENCES section. (WRB)
 920625 Added CONVEX -p8 and -pd8 compiler option constants.
 (BKS, WRB)
 930201 Added DEC Alpha and SGI constants. (RWC and WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 445

D9PAK

 DOUBLE PRECISION FUNCTION D9PAK (Y, N)
 ***BEGIN PROLOGUE D9PAK
 ***PURPOSE Pack a base 2 exponent into a floating point number.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY A6B
 ***TYPE DOUBLE PRECISION (R9PAK-S, D9PAK-D)
 ***KEYWORDS FNLIB, PACK
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 Pack a base 2 exponent into floating point number X. This routine is
 almost the inverse of D9UPAK. It is not exactly the inverse, because
 ABS(X) need not be between 0.5 and 1.0. If both D9PAK and 2.d0**N
 were known to be in range we could compute
 D9PAK = X *2.0d0**N

 ***REFERENCES (NONE)
 ***ROUTINES CALLED D1MACH, D9UPAK, I1MACH, XERMSG
 ***REVISION HISTORY (YYMMDD)
 790801 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890911 Removed unnecessary intrinsics. (WRB)
 891009 Corrected error when XERROR called. (WRB)
 891009 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
 901009 Routine used I1MACH(7) where it should use I1MACH(10),
 Corrected (RWC)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 446

D9UPAK

 SUBROUTINE D9UPAK (X, Y, N)
 ***BEGIN PROLOGUE D9UPAK
 ***PURPOSE Unpack a floating point number X so that X = Y*2**N.
 ***LIBRARY SLATEC (FNLIB)
 ***CATEGORY A6B
 ***TYPE DOUBLE PRECISION (R9UPAK-S, D9UPAK-D)
 ***KEYWORDS FNLIB, UNPACK
 ***AUTHOR Fullerton, W., (LANL)
 ***DESCRIPTION

 Unpack a floating point number X so that X = Y*2.0**N, where
 0.5 .LE. ABS(Y) .LT. 1.0.

 ***REFERENCES (NONE)
 ***ROUTINES CALLED (NONE)
 ***REVISION HISTORY (YYMMDD)
 780701 DATE WRITTEN
 890531 Changed all specific intrinsics to generic. (WRB)
 890531 REVISION DATE from Version 3.2
 891214 Prologue converted to Version 4.0 format. (BAB)
 900820 Corrected code to find Y between 0.5 and 1.0 rather than
 between 0.05 and 1.0. (WRB)
 END PROLOGUE

SLATEC2 (AAAAAA through D9UPAK) - 447

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their

employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

represents that its use would not infringe privately owned rights. Reference herein to any specific commercial
products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government or the
University of California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government thereof, and shall not be used for advertising or product

endorsement purposes. (C) Copyright 1996 The Regents of the University of California. All rights reserved.

SLATEC2 (AAAAAA through D9UPAK) - 448

Structural Keyword Index

Keyword Description
-------- ------------
entire This entire document.
title The name of this document.
scope Topics covered in SLATEC2.
availability Machines on which these routines run.
who Who to contact for assistance.
introduction Brief overview of SLATEC2; and
 other SLATEC documentation.
index This structural keyword index.
date The latest revision date for SLATEC2.
revisions Revision history of this document.

In addition, the name of every subroutine described in SLATEC2 is the keyword and link for retrieving
its description. Included are:

--
Routine Gams Function
Name Cat. Performed
--

AAAAAA z documentation
ACOSH c elementary-functions, special-functions
AI c elementary-functions, special-functions
AIE c elementary-functions, special-functions
ALBETA c elementary-functions, special-functions
ALGAMS c elementary-functions, special-functions
ALI c elementary-functions, special-functions
ALNGAM c elementary-functions, special-functions
ALNREL c elementary-functions, special-functions
ASINH c elementary-functions, special-functions
ATANH c elementary-functions, special-functions
AVINT h2 quadrature, definite-integrals
BAKVEC eispack
BALANC eispack
BALBAK eispack
BANDR eispack
BANDV eispack
BESI c elementary-functions, special-functions
BESI0 c elementary-functions, special-functions
BESI0E c elementary-functions, special-functions
BESI1 c elementary-functions, special-functions
BESI1E c elementary-functions, special-functions
BESJ c elementary-functions, special-functions
BESJ0 c elementary-functions, special-functions
BESJ1 c elementary-functions, special-functions
BESK c elementary-functions, special-functions
BESK0 c elementary-functions, special-functions
BESK0E c elementary-functions, special-functions
BESK1 c elementary-functions, special-functions
BESK1E c elementary-functions, special-functions
BESKES c elementary-functions, special-functions

SLATEC2 (AAAAAA through D9UPAK) - 449

BESKS c elementary-functions, special-functions
BESY c elementary-functions, special-functions
BESY0 c elementary-functions, special-functions
BESY1 c elementary-functions, special-functions
BETA c elementary-functions, special-functions
BETAI c elementary-functions, special-functions
BFQAD e interpolation
BI c elementary-functions, special-functions
BIE c elementary-functions, special-functions
BINOM c elementary-functions, special-functions
BINT4 e interpolation
BINTK e interpolation
BISECT eispack
BLKTRI i2 partial-differential-equations
BNDACC d9 overdetermined-systems, least-squares
BNDSOL d9 overdetermined-systems, least-squares
BQR eispack
BSKIN c elementary-functions, special-functions
BSPDOC z documentation
BSPDR e interpolation
BSPEV e interpolation
BSPPP e interpolation
BSPVD e interpolation
BSPVN e interpolation
BSQAD e interpolation
BVALU e interpolation
BVSUP i1 ordinary-differential-equations
C0LGMC c elementary-functions, special-functions
CACOS c elementary-functions, special-functions
CACOSH c elementary-functions, special-functions
CAIRY c elementary-functions, special-functions
CARG c elementary-functions, special-functions
CASIN c elementary-functions, special-functions
CASINH c elementary-functions, special-functions
CATAN c elementary-functions, special-functions
CATAN2 c elementary-functions, special-functions
CATANH c elementary-functions, special-functions
CAXPY d1a vector-operations
CBABK2 eispack
CBAL eispack
CBESH c elementary-functions, special-functions
CBESI c elementary-functions, special-functions
CBESJ c elementary-functions, special-functions
CBESK c elementary-functions, special-functions
CBESY c elementary-functions, special-functions
CBETA c elementary-functions, special-functions
CBIRY c elementary-functions, special-functions
CBLKTR i2 partial-differential-equations
CBRT c elementary-functions, special-functions
CCBRT c elementary-functions, special-functions
CCHDC linpack cholesky-operations
CCHDD linpack cholesky-operations
CCHEX linpack cholesky-operations
CCHUD linpack cholesky-operations
CCOPY d1a vector-operations
CCOSH c elementary-functions, special-functions
CCOT c elementary-functions, special-functions
CDCDOT d1a vector-operations
CDOTC d1a vector-operations
CDOTU d1a vector-operations

SLATEC2 (AAAAAA through D9UPAK) - 450

CDRIV1 i1 ordinary-differential-equations
CDRIV2 i1 ordinary-differential-equations
CDRIV3 i1 ordinary-differential-equations
CEXPRL c elementary-functions, special-functions
CFFTB1 j1 fast-fourier-transforms
CFFTF1 j1 fast-fourier-transforms
CFFTI1 j1 fast-fourier-transforms
CG eispack
CGAMMA c elementary-functions, special-functions
CGAMR c elementary-functions, special-functions
CGBCO linpack general-band
CGBDI linpack general-band
CGBFA linpack general-band
CGBMV linpack general-band
CGBSL linpack general-band
CGECO linpack general
CGEDI linpack general
CGEEV d4 eigenvalues, eigenvectors
CGEFA linpack general
CGEFS d2 linear-equations
CGEIR d2 linear-equations
CGEMM d1b matrix-operations
CGEMV d1b matrix-operations
CGERC d1b matrix-operations
CGERU d1b matrix-operations
CGESL linpack general
CGTSL linpack general-tridiagonal
CH eispack
CHBMV d1b matrix-operations
CHEMM d1b matrix-operations
CHEMV d1b matrix-operations
CHER d1b matrix-operations
CHER2 d1b matrix-operations
CHER2K d1b matrix-operations
CHERK d1b matrix-operations
CHFDV e interpolation
CHFEV e interpolation
CHICO linpack complex-hermitian
CHIDI linpack complex-hermitian
CHIEV d4 eigenvalues, eigenvectors
CHIFA linpack complex-hermitian
CHISL linpack complex-hermitian
CHKDER f nonlinear-equations
CHPCO linpack complex-hermitian
CHPDI linpack complex-hermitian
CHPFA linpack complex-hermitian
CHPMV d1b matrix-operations
CHPR d1b matrix-operations
CHPR2 d1b matrix-operations
CHPSL linpack complex-hermitian
CHU c elementary-functions, special-functions
CINVIT eispack
CLBETA c elementary-functions, special-functions
CLNGAM c elementary-functions, special-functions
CLNREL c elementary-functions, special-functions
CLOG10 c elementary-functions, special-functions
CMGNBN i2 partial-differential-equations
CNBCO d2 linear-equations
CNBDI d3 determinants
CNBFA d2 linear-equations

SLATEC2 (AAAAAA through D9UPAK) - 451

CNBFS d2 linear-equations
CNBIR d2 linear-equations
CNBSL d2 linear-equations
COMBAK eispack
COMHES eispack
COMLR eispack
COMLR2 eispack
COMQR eispack
COMQR2 eispack
CORTB eispack
CORTH eispack
COSDG c elementary-functions, special-functions
COSQB j1 fast-fourier-transforms
COSQF j1 fast-fourier-transforms
COSQI j1 fast-fourier-transforms
COST j1 fast-fourier-transforms
COSTI j1 fast-fourier-transforms
COT c elementary-functions, special-functions
CPBCO linpack hermitian-positive-definite-band
CPBDI linpack hermitian-positive-definite-band
CPBFA linpack hermitian-positive-definite-band
CPBSL linpack hermitian-positive-definite-band
CPOCO linpack hermitian-positive-definite
CPODI linpack hermitian-positive-definite
CPOFA linpack hermitian-positive-definite
CPOFS d2 linear-equations
CPOIR d2 linear-equations
CPOSL linpack hermitian-positive-definite
CPPCO linpack hermitian-positive-definite
CPPDI linpack hermitian-positive-definite
CPPFA linpack hermitian-positive-definite
CPPSL linpack hermitian-positive-definite
CPQR79 f nonlinear-equations
CPSI c elementary-functions, special-functions
CPTSL linpack positive-definite-tridiagonal
CPZERO f nonlinear-equations
CQRDC d5 qr-decomposition
CQRSL d5 qr-decomposition
CROTG d1a vector-operations
CSCAL d1a vector-operations
CSEVL c elementary-functions, special-functions
CSICO linpack symmetric
CSIDI linpack symmetric
CSIFA linpack symmetric
CSINH c elementary-functions, special-functions
CSISL linpack symmetric
CSPCO linpack symmetric
CSPDI linpack symmetric
CSPFA linpack symmetric
CSPSL linpack symmetric
CSROT d1a vector-operations
CSSCAL d1a vector-operations
CSVDC d6 singular-value-decomposition
CSWAP d1a vector-operations
CSYMM d1b matrix-operations
CSYR2K d1b matrix-operations
CSYRK d1b matrix-operations
CTAN c elementary-functions, special-functions
CTANH c elementary-functions, special-functions
CTBMV d1b matrix-operations

SLATEC2 (AAAAAA through D9UPAK) - 452

CTBSV d1b matrix-operations
CTPMV d1b matrix-operations
CTPSV d1b matrix-operations
CTRCO linpack triangular
CTRDI linpack triangular
CTRMM d1b matrix-operations
CTRMV d1b matrix-operations
CTRSL linpack triangular
CTRSM d1b matrix-operations
CTRSV d1b matrix-operations
CV l statistics
D1MACH r1 machine-constants
D9PAK a arithmetic-functions
D9UPAK a arithmetic-functions

SLATEC2 (AAAAAA through D9UPAK) - 453

Date and Revisions

Revision Keyword
date affected Description of changes
-------- -------- ----------------------

18Mar96 entire Text updated for SLATEC version 4.1.
 Adapted for LC (from NERSC).

31Oct91 background New keyword for document comparisons.
 loading-slatec New loading instructions for UNICOS, CSOS.
 entire Text upgraded to cover SLATEC version 4.0.

30Nov87 entire Text upgraded to cover SLATEC version 3.1.
 Page index added;
 keyword index expanded.

26Oct82 entire First edition of new writeup.

TRG (18Mar96)

UCID-19631,19632,19633
Privacy and Legal Notice (URL: http://www.llnl.gov/disclaimer.html)
TRG (18Mar96) Contact on the OCF: lc-hotline@llnl.gov, on the SCF: lc-hotline@pop.llnl.gov

SLATEC2 (AAAAAA through D9UPAK) - 454

http://www.llnl.gov/disclaimer.html

